Skip to main content Accessibility help
×
Home

Comments on avalanche flow models based on the concept of random kinetic energy

  • DIETER ISSLER (a1), JAMES T. JENKINS (a2) and JIM N. McELWAINE (a3)

Abstract

In a series of papers, Bartelt and co-workers developed novel snow-avalanche models in which random kinetic energy (RKE) RK (a.k.a. granular temperature) is a key concept. The earliest models were for a single, constant density layer, using a Voellmy model but with R K -dependent friction parameters. This was then extended to variable density, and finally a suspension layer (powder-snow cloud) was added. The physical basis and mathematical formulation of these models are critically reviewed here, with the following main findings: (i) Key assumptions in the original RKE model differ substantially from established results on dense granular flows; in particular, the effective friction coefficient decreases to zero with velocity in the RKE model. (ii) In the variable-density model, non-canonical interpretation of the energy balance leads to a third-order evolution equation for the flow depth or density, whereas the stated assumptions imply a first-order equation. (iii) The model for the suspension layer neglects gravity and disregards well-established theoretical and experimental results on particulate gravity currents. Some options for improving these aspects are discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Comments on avalanche flow models based on the concept of random kinetic energy
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Comments on avalanche flow models based on the concept of random kinetic energy
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Comments on avalanche flow models based on the concept of random kinetic energy
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Dieter Issler <Dieter.Issler@ngi.no>

References

Hide All
Ancey, C (2004) Powder snow avalanches: approximation as non-Boussinesq clouds with a Richardson number-dependent entrainment function. J. Geophys. Res., 109, F01005 (doi: 10.1029/2003JF000052)
Ancey, C (2012) Are there “dragon-kings” events (i.e. genuine outliers) among extreme avalanches? Eur. Phys. J. Spec. Top., 205(1), 117129 (doi: 10.1140/epjst/e2012-01565-7)
Bartelt, P and Buser, O (2010) Frictional relaxation in avalanches. Ann. Glaciol., 51(54), 98104 (doi: 10.3189/172756410791386607)
Bartelt, P and Buser, O (2016) The relation between dilatancy, effective stress and dispersive pressure in granular avalanches. Acta Geotech., 11(3), 549557 (doi: 10.1007/s11440-016-0463-7)
Bartelt, P, Buser, O and Platzer, K (2006) Fluctuation–dissipation relations for granular snow avalanches. J. Glaciol., 52(179), 631643 (doi: 10.3189/172756506781828476)
Bartelt, P, Meier, L and Buser, O (2011) Snow avalanche flow-regime transitions induced by mass and RKE fluxes. Ann. Glaciol., 52(58), 159164 (doi: 10.3189/172756411797252158)
Bartelt, P, Bühler, Y, Buser, O, Christen, M and Meier, L (2012) Modeling mass-dependent flow regime transitions to predict the stopping and depositional behavior of snow avalanches. J. Geophys. Res., 117, F01015 (doi: 10.1029/2010JF001957)
Bartelt, P, Buser, O, Vera Valero, C and Bühler, Y (2016) Configurational energy and the formation of mixed flowing/powder-snow and ice avalanches. Ann. Glaciol., 57(71), 179188 (doi: 10.3189/2016AoG71A464)
Beghin, P and Olagne, X (1991) Experimental and theoretical study of the dynamics of powder snow avalanches. Cold Reg. Sci. Technol., 19, 317326 (doi: 10.1016/0165-232X(91)90046-J)
Benjamin, TB (1968) Gravity currents and related phenomena. J. Fluid Mech., 31(2), 209248 (doi: 10.1017/S0022112068000133)
Blagovechshenskiy, V, Eglit, M and Naaim, M (2002) The calibration of an avalanche mathematical model using field data. Nat. Haz. Earth Syst. Sci., 2(3–4), 217220 (doi: 10.5194/nhess-2-217-2002)
Bouchut, F and Westdickenberg, M (2004) Gravity driven shallow water models for arbitrary topography. Commun. Math. Sci., 2(3), 359389 (doi: 10.4310/CMS.2004.v2.n3.a2)
Buser, O and Bartelt, P (2009) Production and decay of RKE in granular snow avalanches. J. Glaciol., 55(189), 312 (doi: 10.3189/00221430978860885)
Buser, O and Bartelt, P (2011) Dispersive pressure and density variations in snow avalanches. J. Glaciol., 57(205), 857860 (doi: 10.3189/002214311798043870)
Buser, O and Bartelt, P (2015) An energy-based method to calculate streamwise density variations in snow avalanches. J. Glaciol., 61(227), 563575 (doi: 10.3189/2015JoG14J054)
Buser, O and Frutiger, H (1980) Observed maximum runout distance of snow avalanches and the determination of the friction coefficients μ and ξ . J. Glaciol., 26(94), 121130 (doi: 10.3189/S0022143000010662)
Christen, M, Kowalski, J and Bartelt, P (2010) RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol., 63(1–2), 114 (doi: 10.1016/j.coldregions.2010.04.005)
De Blasio, FV and 5 others (2004) Flow models of natural debris flows originating from overconsolidated clay materials. Mar. Geol., 213(1–4), 415438 (doi: 10.1016/j.margeo.2004.10.018)
Eglit, ME (1968) Teoreticheskie podkhody k raschetu dvizheniia snezhnyk lavin. (Theoretical approaches to avalanche dynamics). Itogi Nauki. Gidrologiia Sushi. Gliatsiologiia, 69–97, in Russian. English translation in: Soviet Avalanche Research – Avalanche Bibliography Update: 1977–1983. Glaciological Data Report GD–16. World Data Center A for Glaciology [Snow and Ice], 1984, 63–116
Eglit, ME and Demidov, KS (2005) Mathematical modeling of snow entrainment in avalanche motion. Cold Regions Sci. Technol., 43(1–2), 1023 (doi: 10.1016/j.coldregions.2005.03.005)
Ellison, TH and Turner, JS (1959) Turbulent entrainment in stratified flows. J. Fluid Mech., 6, 423448 (doi: 10.1017/S0022112059000738)
Fukushima, Y and Parker, G (1990) Numerical simulation of powder-snow avalanches. J. Glaciol., 36(123), 229237 (doi: 10.3189/S0022143000009485)
Gauer, P (2014) Comparison of avalanche front velocity measurements and implications for avalanche models. Cold Reg. Sci. Technol., 97, 132150 (doi: 10.1016/j.coldregions.2013.09.010)
Gray, JMNT (2001) Granular flow in partially filled slowly rotating drums. J. Fluid Mech., 441, 129 (doi: 10.1017/S0022112001004736)
Gray, JMNT, Wieland, M and Hutter, K (1999) Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. (London), Ser. A, 455, 18411874 (doi: 10.1098/rspa.1999.0383)
Gruber, U (1998) Der Einsatz numerischer Simulationsmethoden in der Lawinengefahrenkartierung. Möglichkeiten und Grenzen. (PhD thesis, University of Zürich, Dept. of Geography, Zürich, Switzerland)
Gubler, H (1989) Comparison of three models of avalanche dynamics. Ann. Glaciol., 13, 8289 (doi: 10.3189/S0260305500007680)
Haff, PK (1983) Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech., 134, 401430 (doi: 10.1017/S0022112083003419)
Holyoake, AJ and McElwaine, JN (2012) High-speed granular chute flows. J. Fluid Mech., 710, 3571 (doi: 10.1017/jfm.2012.331)
Hopfinger, EJ (1983) Snow avalanche motion and related phenomena. Annu. Rev. Fluid Mech., 15, 4776 (doi: 10.1146/annurev.fl.15.010183.000403)
Issler, D and Gauer, P (2008) Exploring the significance of the fluidised flow regime for avalanche hazard mapping. Ann. Glaciol., 49(1), 193198 (doi: 10.3189/172756408787814997)
Issler, D, Gauer, P, Schaer, M and Keller, S (1996) Staublawinenereignisse im Winter 1995: Seewis (GR), Adelboden (BE) und Col du Pillon (VD). Internal Report 694, Eidg. Institut für Schnee- und Lawinenforschung, Davos, Switzerland, in German
Iverson, RM and George, DL (2016) Discussion of The relation between dilatancy, effective stress and dispersive pressure in granular avalanches by P. Bartelt and O. Buser (DOI: 10.1007/s11440-016-0463-7). ActaGeotech, 11, 14651468 (doi: 10.1007/s11440-016-0463-7)
Jenkins, JT and Askari, E (1999) Hydraulic theory for a debris flow supported on a collisional shear layer. Chaos, 9(3), 654658 (doi: 10.1063/1.166439)
Jenkins, JT and Berzi, D (2010) Dense inclined flows of inelastic spheres: tests of an extension of kinetic theory. Gran. Matter, 12, 151158 (doi: 10.1007/s10035-010-0169-8)
Jenkins, JT and Richman, MW (1985) Grad's 13-moment system for a dense gas of inelastic spheres. Arch. Rational Mech. Anal., 87, 355377 (doi: 10.1007/BF00250919)
Jenkins, JT and Savage, SB (1983) A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech., 130, 187202 (doi: 10.1017/S0022112083001044)
Konopliv, N, Llewellyn Smith, SG, McElwaine, JN and Meiburg, E (2016) Modelling gravity currents without an energy closure. J. Fluid Mech., 789, 806829 (doi: 10.1017/jfm.2015.755)
Köhler, A, McElwaine, JN, Sovilla, B, Ash, M and Brennan, P (2016) Surge dynamics of the 3 February 2015 avalanches in Vallée de la Sionne. J. Geophys. Res., 121(11), 21922210 (doi: 10.1002/2016JF003887)
Mangeney, A, 5 others (2010) Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res., 115, F03040 (doi: 10.1029/2009JF001462)
McElwaine, JN (2005) Rotational flow in gravity current heads. Phil. Trans. R. Soc. A, 363, 16031623 (doi: 10.1098/rsta.2005.1597)
Meiburg, E, McElwaine, JN and Kneller, B (2012) Turbidity currents and powder snow avalanches. In Fernando, H ed., Handbook of environmental fluid dynamics, vol. 1, chapter 42. Taylor & Francis, 557573 (doi: 10.1201/b14241-46)
Nokes, RI, Davidson, MJ, Stepien, CA, Veale, WB and Oliver, RL (2008) The front condition for intrusive gravity currents. J. Hydr. Res., 46(6), 788801 (doi: 10.3826/jhr.2008.3108)
Norem, H, Irgens, F and Schieldrop, B (1987) A continuum model for calculating snow avalanche velocities. In Salm, B and Gubler, H eds, Avalanche Formation, Movement and Effects. Proceedings of the Davos Symposium, September 1986, volume 162 of IAHS Publication. IAHS Press, Wallingford, Oxfordshire, UK, 363380
Norem, H, Irgens, F and Schieldrop, B (1989) Simulation of snow-avalanche flow in run-out zones. Ann. Glaciol., 13, 218225 (doi: 10.3189/S026030550000793X)
Parker, G, Fukushima, Y and Pantin, HM (1986) Self-accelerating turbidity currents. J. Fluid Mech., 171, 145181 (doi: 10.1017/S0022112086001404)
Plam, M, Radok, U and Taylor, K (1984) The Soviet avalanche model – exegesis and reformulation. In Soviet Avalanche Research, number GD-16 in Glaciological Data. World Data Center A for Glaciology, Boulder, CO, 165196
Platzer, K, Bartelt, P and Kern, M (2007) Measurements of dense snow avalanche basal shear to normal stress ratios (S/N). Geophys. Res. Lett., 34, L070501 (doi: 10.1029/2006GL028670)
Richman, MW (1988) Boundary conditions based on a modified Maxwellian velocity distribution for flows of identical, smooth, nearly elastic spheres. Acta Mech., 75, 227240 (doi: 10.1007/BF01174637)
Salm, B (1993) Flow, flow transition and runout distances of flowing avalanches. Ann. Glaciol., 18, 221226 (doi: 10.3189/S0260305500011551)
Salm, B and Gubler, H (1985) Measurement and analysis of the motion of dense flow avalanches. Ann. Glaciol., 6, 2634 (doi: 10.3189/1985AoG6-1-26-34)
Salm, B, Burkard, A and Gubler, HU (1990) Berechnung von Fliesslawinen. Eine Anleitung für Praktiker mit Beispielen. Mitteil. EISLF 47, Eidg. Institut für Schnee- und Lawinenforschung, Davos, Switzerland
Sampl, P and Zwinger, T (2004) Avalanche simulation with SAMOS. Ann. Glaciol., 38, 393398 (doi: 10.3189/172756404781815068)
Savage, SB and Hutter, K (1989) The motion of a finite mass of granular material down a rough incline. J. Fluid Mech., 199, 177215 (doi: 10.1017/S0022112089000340)
Savage, SB and Hutter, K (1991) The dynamics of avalanches of granular material from initiation to runout. Part I: Analysis. Acta Mech., 86, 201223 (doi: 10.1007/BF01175958)
Simpson, JE (1987) Gravity Currents: In the Environment and the Laboratory. Ellis Horwood Series in Environmental Science, Ellis Horwood Ltd., Chichester, West Sussex, England
Sovilla, B, McElwaine, JN and Louge, MY (2015) The structure of powder-snow avalanches. C. R. Phys., 16, 97104 (doi: 10.1016/j.crhy.2014.11.005)
Turnbull, B, McElwaine, JN and Ancey, CJ (2007) The Kulikovskiy–Sveshnikova–Beghin model of powder-snow avalanches: development and application. J. Geophys. Res., 112, F0100 (doi: 10.1029/2006JF000489)
Turner, JS (1973) Buoyancy effects in fluids. Cambridge University Press, Cambridge, UK
Turner, JS (1986) Turbulent entrainment: The development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech., 173, 431471 (doi: 10.1017/S0022112086001222)
Voellmy, A (1955) Über die Zerstörungskraft von Lawinen. Schweiz. Bauztg., 73(12, 15, 17, 19), 159165, 212–217, 246–249, 280–285
Volk, G and Kleemayr, K (1999) ELBA – Ein GIS-gekoppeltes Lawinensimulationsmodell – Anwendungen und Perspektiven. VGI – Österr. Z. Vermess. Geoinf., 87(2–3), 8492, in German, with summary in English

Keywords

Related content

Powered by UNSILO

Comments on avalanche flow models based on the concept of random kinetic energy

  • DIETER ISSLER (a1), JAMES T. JENKINS (a2) and JIM N. McELWAINE (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.