Skip to main content Accessibility help
×
Home

Centreline and cross-glacier air temperature variability on an Alpine glacier: assessing temperature distribution methods and their influence on melt model calculations

  • THOMAS E. SHAW (a1) (a2), BEN W. BROCK (a1), ÁLVARO AYALA (a3), NICK RUTTER (a1) and FRANCESCA PELLICCIOTTI (a1)...

Abstract

The spatio-temporal distribution of air temperature over mountain glaciers can demonstrate complex patterns, yet it is often represented simplistically using linear vertical temperature gradients (VTGs) extrapolated from off-glacier locations. We analyse a network of centreline and lateral air temperature observations at Tsanteleina Glacier, Italy, during summer 2015. On average, VTGs are steep (<−0.0065 °C m−1), but they are shallow under warm ambient conditions when the correlation between air temperature and elevation becomes weaker. Published along-flowline temperature distribution methods explain centreline observations well, including warming on the lower glacier tongue, but cannot estimate lateral temperature variability. Application of temperature distribution methods improves simulation of melt rates (RMSE) in an energy-balance model by up to 36% compared to the environmental lapse rate extrapolated from an off-glacier station. However, results suggest that model parameters are not easily transferable to glaciers with a small fetch without recalibration. Such methods have potential to improve estimates of temperature across a glacier, but their parameter transferability should be further linked to the glacier and atmospheric characteristics. Furthermore, ‘cold spots’, which can be >2°C cooler than expected for their elevation, whose occurrence is not predicted by the temperature distribution models, are identified at one-quarter of the measurement sites.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Centreline and cross-glacier air temperature variability on an Alpine glacier: assessing temperature distribution methods and their influence on melt model calculations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Centreline and cross-glacier air temperature variability on an Alpine glacier: assessing temperature distribution methods and their influence on melt model calculations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Centreline and cross-glacier air temperature variability on an Alpine glacier: assessing temperature distribution methods and their influence on melt model calculations
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence: Thomas E. Shaw <thomas.shaw@amtc.uchile.cl>

References

Hide All
Anslow, FS, Hostetler, S, Bidlake, WR and Clark, PU (2008) Distributed energy balance modeling of South Cascade Glacier, Washington and assessment of model uncertainty. J. Geophys. Res., 113(F2), F02019 (doi: 10.1029/2007JF000850)
Arnold, NS, Rees, WG, Hodson, AJ and Kohler, J (2006) Topographic controls on the surface energy balance of a high Arctic valley glacier. J. Geophys. Res., 111(F2), F02011 (doi: 101029/2005JF000426)
Ayala, A, Pellicciotti, F and Shea, JM (2015) Modeling 2 m air temperatures over mountain glaciers: exploring the influence of katabatic cooling and external warming. J. Geophys. Res. Atmos., 120, 119 (doi: 10.1002/2015JD023137)
Ayala, A, Pellicciotti, F, Peleg, N and Burlando, P (2017) Distributed modelling of the summer energy balance of Juncal Norte Glacier, Chile: estimating melt and surface sublimation rates at high- elevation unmonitored sites. J. Glaciol., Accepted – April, 2017
Brock, BW and Arnold, NS (2000), A spreadsheet-based (Microsoft Excel) point surface energy balance model for glacier and snow melt studies. Earth Surf. Process. Landforms, 25 649658 (doi: 10.1002/1096-9837(200006)25:6<649: AID-ESP97>3.0.CO;2-U)
Brock, BW, Willis, IC and Sharp, MJ (2006) Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d'Arolla, Switzerland. J. Glaciol., 52(177), 281–F02297
Carenzo, M (2012) Distributed modelling of changes in glacier mass balance and runoff . (PhD thesis, ETH Zürich)
Carturan, L, Cazorzi, F, De Blasi, F and Dalla Fontana, G (2015) Air temperature variability over three glaciers in the Ortles–Cevedale (Italian Alps): effects of glacier fragmentation, comparison of calculation methods, and impacts on mass balance modeling. Cryosphere, 9(3), 11291146 (doi: 10.5194/tc-9-1129-2015)
Engelhardt, M, Schuler, TV and Andreassen, LM (2013) Glacier mass balance of Norway 1961–2010 calculated by a temperature-index model. Ann. Glaciol., 54(63), 3240 (doi: 10.3189/2013AoG63A245)
Foessel, DG (1974) An analysis of the temperature distribution over the Peyto Glacier, Alberta . (M.Sc. thesis, University of Guelph)
Fyffe, CL and 6 others (2014) A distributed energy-balance melt model of an alpine debris-covered glacier. J. Glaciol., 60(221), 587602 (doi: 10.3189/2014JoG13J148)
Gabbi, J, Carenzo, M, Pellicciotti, F, Bauder, A and Funk, M (2014) A comparison of empirical and physically based glacier surface melt models for long-term simulations of glacier response. J. Glaciol., 60(224), 11401154 (doi: 10.3189/2014JoG14J011)
Georges, C and Kaser, G (2002) Ventilated and unventilated air temperature measurements for glacier-climate studies on a tropical high mountain site. J. Geophys. Res., 107, 4775 (doi: 10.1029/2002JD002503)
Greuell, W and Böhm, R (1998) 2 m temperatures along melting mid-latitude glaciers, and implications for the sensitivity of the mass balance to variations in temperature. J. Glaciol., 44(146), 920
Greuell, W, Knap, WH and Smeets, PC (1997) Elevational changes in meteorological variables along a midlatitude glacier during summer. J. Geophys. Res., 102(D22), 25941 (doi: 10.1029/97JD02083)
Hannah, DM, Gurnell, AM and McGregor, GR (2000) Spatio-temporal variation in microclimate, the surface energy balance and ablation over a cirque glacier. Int. J. Climatol., 20(7), 733758 (doi: 10.1002/1097-0088(20000615)20:7<733::AID-JOC490>3.0.CO;2-F)
Hock, R (1999) A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. J. Glaciol., 45(149), 101111
Hock, R, de Woul, M, Radić, V and Dyurgerov, M (2009) Mountain glaciers and ice caps around Antarctica make a large sea level rise contribution. Geophys. Res. Lett., 36(7), L07501 (doi: 10.1029/2008GL037020)
Jóhannesson, T, Sigurðsson, O, Laumann, T and Kennett, M (1995) Degree-day glacier mass-balance modelling with applications to glaciers in Iceland, Norway and Greenland. J. Glaciol., 41(138), 345358
Juszak, I and Pellicciotti, F (2013) A comparison of parameterizations of incoming longwave radiation over melting glaciers: model robustness and seasonal variability. J. Geophys. Res. Atmos., 118(8), 30663084 (doi: 10.1002/jgrd.50277)
Konya, K, Hock, R and Naruse, R (2007) Temperature lapse rates and surface energy balance at Storglaciären, northern Sweden. Glacier Mass Balance Meltwater Discharge, (selected papers from sessions at the IAHS Assembly in Foz do Iguaçu, Brazil, 2005). IAHS Publ. 318, 186194
MacDougall, AH and Flowers, GE (2011) Spatial and temporal transferability of a distributed energy-balance glacier melt model. J. Clim., 24(5), 14801498 (doi: 10.1175/2010JCLI3821.1)
MacDougall, AH, Wheler, B and Flowers, GE (2011) A preliminary assessment of glacier melt-model parameter sensitivity and transferability in a dry subarctic environment. Cryosphere, 5(4), 10111028 (doi: 10.5194/tc-5-1011-2011)
Marshall, SJ (2014) Meltwater run-off from Haig Glacier, Canadian Rocky Mountains, 2001–2013. Hydrol. Earth Syst. Sci., 18(12), 51815200 (doi: 10.5194/hess-18-5181-2014)
Marshall, SJ, Sharp, MJ, Burgess, DO and Anslow, FS (2007) Near-surface-temperature lapse rates on the Prince of Wales Icefield, Ellesmere Island, Canada: implications for regional downscaling of temperature. Int. J. Climatol., 27, 385398 (doi: 101002/joc)
Munro, DS (1989) Surface roughness and bulk heat transfer on a glacier: comparison with eddy correlation. J. Glaciol., 35(121), 343348
Munro, DS (2006) Linking the weather to glacier hydrology and mass balance at Peyto glacier. Peyto Glacier One Century Sci., National Hydrology Research Institute Science Report 8, 135178
Nolin, AW, Phillippe, J, Jefferson, A and Lewis, SL (2010) Present-day and future contributions of glacier runoff to summertime flows in a Pacific Northwest watershed: implications for water resources. Water Resour. Res., 46(12), n/a–n/a (doi: 10.1029/2009WR008968)
Oerlemans, J (2001) Glaciers and climate change. AA Balkema, Lisse
Ohata, T (1992) An evaluation of scale-dependent effects of atmosphere-glacier interactions on heat supply to glaciers. Ann. Glaciol., 16, 115122
Ohmura, A (2001) Physical basis for the temperature-based melt-index method. J. Appl. Meteorol., 40(4), 753761
Pellicciotti, F and 7 others (2008) A study of the energy balance and melt regime on Juncal Norte Glacier, semi-arid Andes of central Chile, using melt models of different complexity. Hydrol. Process., 22, 39803997 (doi: 10.1002/hyp)
Pellicciotti, F, Ragettli, S, Carenzo, M and McPhee, J (2014) Changes of glaciers in the Andes of Chile and priorities for future work. Sci. Total Environ., 493C(2014), 11971210 (doi: 10.1016/j.scitotenv.2013.10.055)
Petersen, L and Pellicciotti, F (2011) Spatial and temporal variability of air temperature on a melting glacier: atmospheric controls, extrapolation methods and their effect on melt modeling, Juncal Norte Glacier, Chile. J. Geophys. Res., 116(D23), D23109 (doi: 10.1029/2011JD015842)
Petersen, L, Pellicciotti, F, Juszak, I, Carenzo, M and Brock, BW (2013) Suitability of a constant air temperature lapse rate over an alpine glacier: testing the Greuell and Böhm model as an alternative. Ann. Glaciol., 54(63), 120130 (doi: 10.3189/2013AoG63A477)
Ragettli, S and Pellicciotti, F (2012) Calibration of a physically based, spatially distributed hydrological model in a glacierized basin: on the use of knowledge from glaciometeorological processes to constrain model parameters. Water Resour. Res., 48(3) (doi: 10.1029/2011WR010559)
Reda, I and Andreas, A (2008) Solar Position Algorithm for Solar Radiation Applications, National Renewable Energy Laboratory. Technical Report NREL/TP-560-34302. US Department of Energy, Oak Ridge
Reid, TD, Carenzo, M, Pellicciotti, F and Brock, BW (2012) Including debris cover effects in a distributed model of glacier ablation. J. Geophys. Res. Atmos., 117(D18) (doi: 10.1029/2012JD017795)
Reijmer, CH and Hock, R (2008) Internal accumulation on Storglaciaren, Sweden, in a multi-layer snow model coupled to a distributed energy- and mass-balance model. J. Glaciol., 54(184), 6172
Sauter, T and Galos, SP (2016) Effects of local advection on the spatial sensible heat flux variation on a mountain glacier. Cryosphere, 10, 130 (doi: 10.5194/tc-2016-139).
Shaw, TE and 5 others (2016) Air temperature distribution and energy-balance modelling of a debris-covered glacier. J. Glaciol., 62 (doi: 10.1017//jog.2016.31)
Shea, J (2010) Regional-scale distributed modelling of glacier meteorology and melt, southern Coast Mountains, Canada . PhD thesis, University of British Columbia
Shea, JM and Moore, RD (2010) Prediction of spatially distributed regional-scale fields of air temperature and vapor pressure over mountain glaciers. J. Geophys. Res., 115(D23), D23107 (doi: 10.1029/2010JD014351)
Steiner, JF and Pellicciotti, F (2016) Variability of air temperature over a debris-covered glacier in the Nepalese Himalaya. Ann. Glaciol., 57(71), 295307 (doi: 10.3189/2016AoG71A066)
Strasser, U and 5 others (2004) Spatial and temporal variability of meteorological variables at Haut Glacier d'Arolla (Switzerland) during the ablation season 2001: measurements and simulations. J. Geophys. Res., 109, D03103 (doi: 10.1029/2003JD003973)
Tachikawa, T, Hato, M, Kaku, M and Iwasaki, A (2011) The characteristics of ASTER GDEM version 2. Geoscience and Remote Sensing Symposium (IGARSS), IEEE International, British Columbia, Canada, 24–29 July 2011
van den Broeke, MR (1997) Momentum, heat, and moisture budgets of the katabatic wind layer over a midlatitude glacier in summer. J. Appl. Meteorol., 36(1987), 763774
van de Wal, RSW, Oerlemans, J and van der Hage, JC (1992) A study of ablation variations on the tongue of Hintereisferner, Austrian Alps. J. Glaciol., 38(130), 319324
Winstral, A, Elder, K and Davis, RE (2002) Spatial snow modeling of wind-redistributed snow using terrain-based parameters. J. Hydrometeorol., 3(5), 524538 (doi: 10.1175/1525-7541(2002)003<0524:SSMOWR>2.0.CO;2)

Keywords

Type Description Title
WORD
Supplementary materials

Shaw et al supplementary material 1
Shaw et al supplementary material

 Word (14 KB)
14 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed