Skip to main content Accessibility help
×
Home

Bayesian estimation of basal conditions on Rutford Ice Stream, West Antarctica, from surface data

  • Mélanie Raymond Pralong (a1) and G. Hilmar Gudmundsson (a2)

Abstract

The determination of basal properties on ice streams from surface data is formulated as a Bayesian statistical inference problem. The theory is applied to a flowline on Rutford Ice Stream, West Antarctica. Estimates of bed topography and basal slipperiness are updated using measurements of surface topography and the horizontal and vertical components of the surface velocity. The surface topography is allowed to vary within measurement errors. We calculate the transient evolution of the surface until rates of surface elevation change are within limits given by measurements. For our final estimation of basal properties, modelled rates of elevation change are in full agreement with estimates of surface elevation changes. Results are discarded from a section of the flowline where the distribution of surface residuals is not consistent with error estimates. Apart from a general increase in basal slipperiness toward the grounding line, we find no evidence for any spatial variations in basal slipperiness. In particular, we find that short-scale variability (<10 × ice thickness) in surface topography and surface velocities can be reproduced by the model by variations in basal topography only. Assuming steady-state conditions, an almost perfect agreement is found between modelled and measured surface geometry, suggesting that Rutford Ice Stream is currently close to a steady state.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Bayesian estimation of basal conditions on Rutford Ice Stream, West Antarctica, from surface data
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Bayesian estimation of basal conditions on Rutford Ice Stream, West Antarctica, from surface data
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Bayesian estimation of basal conditions on Rutford Ice Stream, West Antarctica, from surface data
      Available formats
      ×

Copyright

References

Hide All
Alley, R.B. 1993. In search of ice-stream sticky spots. J. Glaciol., 39(133), 447454.
Arthern, R.J., Winebrenner, D.P. and Vaughan, D.G.. 2006. Antarctic snow accumulation mapped using polarization of 4.3 cm wavelength microwave emission. J. Geophys. Res., 111(D6), D06107. (10.1029/2004JD005667.)
Blankenship, D.D., Bentley, C.R., Rooney, S.T. and Alley, R.B.. 1986. Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream. Nature, 322(6074), 5457.
Frolich, R.M., Mantripp, D.R., Vaughan, D.G. and Doake, C.S.M.. 1987. Force balance of Rutford Ice Stream, Antarctica. IAHS Publ. 170 (Symposium at Vancouver 1987 – The Physical Basis of Ice Sheet Modelling), 323331.
Frolich, R.M., Vaughan, D.G. and Doake, C.S.M.. 1989. Flow of Rutford Ice Stream and comparison with Carlson Inlet, Antarctica. Ann. Glaciol., 12, 5156.
Gudmundsson, G.H. 2003. Transmission of basal variability to a glacier surface. J. Geophys. Res., 108(B5), 2253. (10.1029/2002JB0022107.)
Gudmundsson, G.H. 2006. Case study: estimating basal properties of glaciers from surface measurements. In Knight, P.G., ed. Glacier science and environmental change. Oxford, Blackwell.
Gudmundsson, G.H. 2007. Tides and the flow of Rutford Ice Stream, West Antarctica. J. Geophys. Res., 112(F4), F04007. (10.1029/2006JF000731.)
Gudmundsson, G.H. 2008. Analytical solutions for the surface response to small amplitude perturbations in boundary data in the shallow-ice-stream approximation. Cryosphere, 2(2), 7793.
Gudmundsson, G.H. and Jenkins, A.. 2009. Ice-flow velocities on Rutford Ice Stream, West Antarctica, are stable over decadal timescales. J. Glaciol., 55(190), 339344.
Gudmundsson, G.H. and Raymond, M.. 2008. On the limit to resolution and information on basal properties obtainable from surface data on ice streams. Cryosphere, 2(2), 167178.
Hutter, K. 1983. Theoretical glaciology; material science of ice and the mechanics of glaciers and ice sheets. Dordrecht, etc., D. Reidel Publishing Co./Tokyo, Terra Scientific Publishing Co.
Joughin, I., MacAyeal, D.R. and Tulaczyk, S.. 2004. Basal shear stress of the Ross Ice streams from control method inversions. J. Geophys. Res., 109(B9), B09405. (10.1029/2003JB002960.)
Joughin, I., Bamber, J.L., Scambos, T., Tulaczyk, S., Fahnestock, M. and MacAyeal, D.R.. 2006. Integrating satellite observations with modelling: basal shear stress of the Filcher–Ronne ice streams, Antarctica. Philos. Trans. R. Soc. London, Ser. A, 364(1844), 17951814.
Kamb, B. 2001. Basal zone of the West Antarctic ice streams and its role in lubrication of their rapid motion. In Alley, R.B. and Bindschadler, R.A., eds. The West Antarctic ice sheet: behavior and environment. Washington, DC, American Geophysical Union, 157199.
Kitanidis, P.K. 1997. Introduction to geostatistics: applications in hydrogeology. Cambridge, etc., Cambridge University Press.
Leysinger Vieli, G.J.M.C. and Gudmundsson, G.H.. 2004. On estimating length fluctuations of glaciers caused by changes in climatic forcing. J. Geophys. Res., 109(F1), F01007. (10.1029/2003JF000027.)
MSC Software Corporation 2000. MSC.Marc/Mentat user’s manual. Los Angeles, CA, MSC Software Corporation.
Raymond, M. 2007. Estimating basal properties of glaciers and ice streams from surface measurements. Mitt. VAW/ETH, 202.
Raymond, M.J. and , G.H.. 2005. On the relationship between surface and basal properties on glaciers, ice sheets, and ice streams. J. Geophys. Res., 110(B8), B08411. (10.1029/2005JB003681.)
Raymond, M.J. and Gudmundsson, G.H.. 2009. Estimating basal properties of ice streams from surface measurements: a nonlinear Bayesian inverse approach applied to synthetic data. Cryosphere, 3(2), 265278.
Smith, G.D. and Morland, L.W.. 1981. Viscous relations for the steady creep of polycrystalline ice. Cold Reg. Sci. Technol., 5(2), 141150.
Stephenson, S.N. and Doake, C.S.M.. 1982. Dynamic behaviour of Rutford Ice Stream. Ann. Glaciol., 3, 295299.
Tarantola, A. 2005. Inverse problem theory and methods for model parameter estimation. Philadelphia, PA, Society for Industrial and Applied Mathematics.
Whillans, I.M., Bentley, C.R. and van der Veen, C.J.. 2001. Ice Streams B and C. In Alley, R.B. and Bindschadler, R.A., eds. The West Antarctic ice sheet: behavior and environment. Washington, DC, American Geophysical Union, 257281.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed