Skip to main content Accessibility help
×
Home

Basal-crevasse-fill origin of laminated debris bands at Matanuska Glacier, Alaska, U.S.A.

  • Staci L. Ensminger (a1), Richard B. Alley (a2), Edward B. Evenson (a3), Daniel E. Lawson (a4) and Grahame J. Larson (a5)...

Abstract

The numerous debris bands in the terminus region of Matanuska Glacier, Alaska, U.S.A., were formed by injection of turbid meltwaters into basal crevasses. The debris bands are millimeter(s)-thick layers of silt-rich ice cross-cutting older, debris-poor englacial ice. The sediment grain-size distribution of the debris bands closely resembles the suspended load of basal waters, and of basal and proglacial ice grown from basal waters, but does not resemble supraglacial debris, till or the bedload of subglacial streams. Most debris bands contain anthropogenic tritium (3H) in concentrations similar to those of basal meltwater and ice formed from that meltwater, but cross-cut englacial ice lacking tritium. Stable-isotopic ratios (δ 18O and δD) of debris-band ice are consistent with freezing from basal waters, but are distinct from those in englacial ice. Ice petrofabric data along one debris band lack evidence of active shearing. High basal water pressures and locally extensional ice flow associated with overdeepened subglacial basins favor basal crevasse formation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Basal-crevasse-fill origin of laminated debris bands at Matanuska Glacier, Alaska, U.S.A.
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Basal-crevasse-fill origin of laminated debris bands at Matanuska Glacier, Alaska, U.S.A.
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Basal-crevasse-fill origin of laminated debris bands at Matanuska Glacier, Alaska, U.S.A.
      Available formats
      ×

Copyright

References

Hide All
Alley, R. B. 1992. Flow-law hypotheses for ice-sheet modeling. J. Glaciol, 38(129), 245256.
Alley, R. B., Gow, A. J., Meese, D. A., Fitzpatrick, J. J., Waddington, E. D. and Bolzan, J. F.. 1997a. Grain-scale processes, folding and stratigraphic disturbance in the GISP2 ice core. J. Geophys. Res., 102(C12), 26,81926,830.
Alley, R. B., Cuffey, K. M., Evenson, E. B., Strasser, J. C., Lawson, D. E. and Larson, G. J.. 1997b. How glaciers entrain and transport basal sediment: physical constraints. Quat. Sci. Rev., 16(9), 10171038.
Alley, R. B., Lawson, D. E., Evenson, E. B., Strasser, J. C. and Larson, G. J.. 1998. Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice. II. Theory. J. Glaciol., 44(148), 563569.
Alley, R. B., Strasser, J. C., Lawson, D. E., Evenson, E. B. and Larson, G. J.. 1999. Some glaciological and geological implications of basal-ice accretion in an overdeepening. In Mickelson, D. M. and Attig, J. W., eds. Glacial processes: past and present. Boulder, CO, Geological Society of America, 19. (Special Paper 337.)
Bennett, M. R., Huddart, D. and Waller, R. I.. 2000. Glaciofluvial crevasse and conduit fills as indicators of supraglacial dewatering during a surge, Skeiðarárjökull, Iceland. J. Glaciol., 46(152), 2534.
Bishop, B. C. 1957. Shear moraines in theThule area, northwest Greenland. SIPRE Res. Rep. 17.
Blankenship, D. D., Anandakrishnan, S., Kempf, J. L. and Bentley, C. R.. 1987. Microearthquakes under and alongside Ice Stream B, Antarctica, detected by a new passive seismic array. Ann. Glaciol., 9, 3034.
Boulton, G. S. 1970. On the origin and transport of englacial debris in Svalbard glaciers. J. Glaciol., 9(56), 213229.
Budd, W. F. and Jacka, T. H.. 1989. A review of ice rheology for ice sheet modelling. Cold Reg. Sci. Technol., 16(2), 107144.
Clarke, G. K. C. and Blake, E. W.. 1991. Geometric and thermal evolution of a surge-type glacier in its quiescent state: Trapridge Glacier, Yukon Territory, Canada, 1969–89. J. Glaciol., 37(125), 158169.
Ehlers, J. 1981. Some aspects of glacial erosion and deposition in north Germany. Ann. Glaciol., 2, 143146.
Engelder, T., Fischer, M. P. and Gross, M. R.. 1993. Geological aspects of fracture mechanics. Boulder, CO, Geological Society of America. (Short Course Notes.)
Ensminger, S. L. 2000. Basal processes at Matanuska Glacier, Alaska and a model of basal freeze-on beneath the Laurentide ice sheet. (Ph.D. thesis, Lehigh University, Bethlehem, PA.)
Ensminger, S. L., Evenson, E. B., Alley, R. B., Larson, G. J., Lawson, D. E. and Strasser, J. C.. 1999a. Example of the dependence of ice motion on subglacial drainage system evolution: Matanuska Glacier, Alaska, United States. In Mickelson, D. M. and Attig, J. W., eds. Glacial processes: past and present. Boulder, CO, Geological Society of America, 1122. (Special Paper 337.)
Ensminger, S. L., Evenson, E. B., Larson, G. J., Lawson, D. E., Alley, R. B. and Strasser, J. C.. 1999b. Preliminary study of laminated, silt-rich debris bands: Matanuska Glacier, Alaska, U.S.A. Ann. Glaciol., 28, 261266.
Evenson, E. B. and Clinch, J. M.. 1987. Debris transport mechanisms at active alpine glacier margins: Alaska case studies. In Kujansuu, R. and Saarnisto, M., eds. INQUA Till Symposium, Finland 1985. Espoo, Geological Societyof Finland, 111136. (Geol. Surv. Finl. Spec. Pap 3.)
Evenson, E. B. and 6 others. 1999. Field evidence for the recognition of glaciohydraulic supercooling. In Mickelson, D. M. and Attig, J. W., eds. Glacial processes: past and present. Boulder, CO, Geological Society of America, 2335. (Special Paper 337.)
Folk, R. L. 1974. Petrology of sedimentary rocks. Second edition. Austin, TX, Hemphill Press.
Gat, J. R. 1980. The isotopes of hydrogen and oxygen in precipitation. In Fritz, P. and Fontes, J. C., eds. Handbook of environmental isotope geochemistry. Amsterdam, Elsevier, 2147.
Glasser, N. F., Hambrey, M. J., Crawford, K. R., Bennett, M. R. and Huddart, D.. 1998. The structural glaciology of Kongsvegen, Svalbard, and its role in landform genesis. J. Glaciol., 44(146), 136148. (Erratum: 46(154), 2000, p. 538.)
Goldthwait, R. P. 1951. Development of end moraines in east-central Baffin Island. J. Geol., 59(6), 567577.
Gow, A. J. and Williamson, T.. 1976. Rheological implications of the internal structure and crystal fabrics of the West Antarctic ice sheet as revealed by deep core drilling at Byrd Station. Geol. Soc. Am. Bull., 87(12), 16651677.
Gow, A. J., Epstein, S. and Sheehy, W.. 1979. On the origin of stratified debris in ice cores from the bottom of the Antarctic ice sheet. J. Glaciol., 23(89), 185192.
Grove, J. M. 1960. A study of Veslgjuv-breen. In Lewis, W. V., ed. Norwegian cirque glaciers. London, Royal Geographical Society, 6982. (R.G.S. Research Series 4.)
Gustavson, T. C. and Boothroyd, J. C.. 1987. A depositional model for outwash, sediment sources, and hydrologic characteristics, Malaspina Glacier, Alaska: a modern analog of the southeastern margin of the Laurentide ice sheet. Geol. Soc. Am. Bull., 99(2), 187200.
Hambrey, M.J. and Müller, F.. 1978. Structures and ice deformation in the White Glacier, Axel Heiberg Island, Northwest Territories, Canada. J. Glaciol., 20(82), 4166.
Hambrey, M. J., Dowdeswell, J. A., Murray, T. and Porter, P. R.. 1996. Thrusting and debris entrainment in a surging glacier: Bakaninbreen, Svalbard. Ann. Glaciol., 22, 241248.
Hambrey, M. J., Bennett, M. R., Dowdeswell, J. A., Glasser, N. F. and Huddart, D.. 1999. Debris entrainment and transfer in polythermal valley glaciers. J. Glaciol., 45(149), 6986.
Hanson, B. 1995. A fully three-dimensional finite-element model applied to velocities on Storglaciären, Sweden. J. Glaciol., 41(137), 91102.
Harrison, W. D. 1972. Temperature of a temperate glacier. J. Glaciol., 11(61), 1529.
Holmlund, P. 1988. Internalgeometry and evolution of moulins, Storglaciären, Sweden. J. Glaciol., 34(117), 242248.
Hooke, R. LeB. 1973. Structure and flow in the margin of the Barnes Ice Cap, Baffin Island, N.W.T., Canada. J. Glaciol., 12(66), 423438.
Hooke, R. LeB. 1991. Positive feedbacks associated with erosion of glacial cirques and overdeepenings. Geol. Soc. Am. Bull., 103(8), 11041108.
Hooke, R. LeB. and Pohjola, V. A.. 1994. Hydrology of a segment of a glacier situated in an overdeepening, Storglaciären, Sweden. J. Glaciol., 40(134), 140148.
Hubbard, B. and Sharp, M.. 1995. Basal ice facies and their formation in the western Alps. Arct. Alp. Res., 27(4), 301310.
Hudleston, P. J. and Hooke, R. LeB.. 1980. Cumulative deformation in the Barnes Ice Cap and implications for the development of foliation. Tectonophysics, 66(1–3), 127146.
Humphrey, N., Kamb, B., Fahnestock, M. and Engelhardt, H.. 1993. Characteristics of the bed of the lower Columbia Glacier, Alaska. J. Geophys. Res., 98(B1), 837846.
Iverson, N. R. 1991. Potential effects of subglacial water-pressure fluctuations on quarrying. J. Glaciol., 37(125), 2736.
Jezek, K. C., Alley, R. B. and Thomas, R. H.. 1985. Rheology of glacier ice. Science, 227(4692), 13351337.
Kamb, W. B. 1961. The glide direction in ice. J. Glaciol., 3(30), 10971106.
Koteff, C. 1974. The morphologic sequence concept and deglaciation of southern New England. In Coates, D.R., ed. Glacial geomorphology. Binghamton, NY, State University of New York, 121144.
Koteff, C. and Pessl, F. Jr. 1981. Systematic ice retreat in New England. U.S. Geol. Surv. Prof Pap. 1179.
Langway, C. C. Jr. 1958. Ice fabrics and the universal stage. SIPRE Tech. Rep. 62.
Lawson, D. E. 1979. Sedimentological analysis of the western terminus region of the Matanuska Glacier, Alaska. CRREL Rep. 79-9.
Lawson, D. E. 1982. Mobilization, movement and deposition of active subaerial sediment flows, Matanuska Glacier, Alaska. J. Geol., 90(3), 279300.
Lawson, D. E. 1993. Glaciohydrologic and glaciohydraulic effects on runoff and sediment yield in glacierized basins. CRREL Monogr. 93-02.
Lawson, D. E. and Hunter, L. E.. 1996. Glaciologic response to rapid fjord infilling during the marine to terrestrial transition, Muir Glacier, Glacier Bay, Alaska. [Abstract] Geol. Soc. Am. Abstr. Programs, 28(7), 56.
Lawson, D. E. and Kulla, J. B.. 1978. An oxygen isotope investigation of the origin of the basal zone of the Matanuska Glacier, Alaska. J. Geol., 86(6), 673685.
Lawson, D. E., Strasser, J. C., Evenson, E. B., Alley, R. B., Larson, G. J. and Arcone, S. A.. 1998. Glaciohydraulic supercooling: a freeze-onmechanism to create stratified, debris-rich basal ice. I. Field evidence. J. Glaciol., 44(148), 547562.
Leventhal, J. S. and Libby, W. F.. 1970. Tritium fallout in the Pacific United States. J. Geophys. Res., 75(36), 76287633.
Libby, W. F. 1955. Tritium in nature. J. Wash. Acad. Sci., 45(10), 301314.
Mickelson, D. M. and Berkson, J. M.. 1974. Till ridges presently forming above and below sea level in Wachusett Inlet, Glacier Bay, Alaska. Geogr. Ann., 56A(1–2), 111119.
Moran, S. R. 1971. Glaciotectonic structures in drift. In Goldthwait, R.P., ed. Till: a symposium. Columbus, OH, Ohio State University Press, 127148.
Mulholland, J. W. 1982. Glacial stagnation-zone retreat in New England: bedrock control. Geology, 10(11), 567571.
Novick, A. N., Bentley, C. R. and Lord, N.. 1992. Variations in the amplitude of radar returns from the bottom of Ice Stream B, Antarctica. [Abstract] Eos, 73(43), Supplement, 181.
Paterson, W. S. B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier.
Raymond, C. F. 1976. Some thermal effects of bubbles in temperate glacier ice. J. Glaciol., 16(74), 159171.
Roberts, M. J., Russell, A. J., Tweed, F. S. and Knudsen, Ó.. 2000. Correspondence. Rapid sediment entrainment and englacial deposition during jökulhlaups. J. Glaciol., 46(153), 349351.
Schulson, E. M. 1987. The fracture of ice Ih . J. Phys. (Paris), 48, Colloq. C1, 207218. (Supplément au 3.)
Sharp, M. 1984. Annual moraine ridges at Skalafellsjökull, south-east Iceland. J. Glaciol., 30(104), 8293.
Sharp, M. 1985.“Crevasse-fill” ridges — a landform type characteristic of surging glaciers? Geogr. Ann., 67A(3–4), 213220.
Souchez, R. A. and Lorrain, R. D.. 1991. Ice composition and glacier dynamics. New York, etc., Springer-Verlag. (Springer Series in Physical Environment 8.)
Stenborg, T. 1968. Glacier drainage connected with ice structures. Geogr. Ann., 50A(1), 2553.
Stewart, D. P. and MacClintock, P.. 1971. Ablation till in northeastern Vermont. In Goldthwait, R. P., ed. Till: a symposium. Columbus, OH, Ohio State University Press, 106114.
Strasser, J. C., Lawson, D. E., Larson, G. J., Evenson, E. B. and Alley, R. B.. 1996. Preliminary results of tritium analyses in basal ice, Matanuska Glacier, Alaska, U.S.A.: evidence for subglacial ice accretion. Ann. Glaciol, 22, 126133.
Sugden, D. E. and John, B. S.. 1976. Glaciers and landscape; a geomorphological approach. London, Edward Arnold.
Titus, D. D., Larson, G. J., Strasser, J. C., Lawson, D. E., Evenson, E. B. and Alley, R. B.. 1999. Isotopic composition of vent discharge from the Matanuska Glacier, Alaska: implications for the origin of basal ice. In Mickelson, D. M. and Attig, J. W., eds. Glacial processes: past and present. Boulder, CO, Geological Society of America, 3744. (Special Paper 337.)
Weertman, J. 1961. Mechanism for the formation of inner moraines found near the edge of cold ice caps and ice sheets. J. Glaciol., 3(30), 965978.
Weertman, J. 1973. Can a water-filled crevasse reach the bottom surface of a glacier? International Association of Scientific Hydrology Publication 95 (Symposium at Cambridge 1969 — Hydrology of Glaciers), 139145.
Whillans, I. M., Bentley, C. R. and van der Veen, C. J.. 2001. Ice Streams B and C. In Alley, R. B. and Bindschadler, R. A., eds. The West Antarctic ice sheet: behavior and environment. Washington, DC, American Geophysical Union, 257281. (Antarctic Research Series 77.)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed