Skip to main content Accessibility help
×
Home

Automated processing to derive dip angles of englacial radar reflectors in ice sheets

  • Louise C. Sime (a1), Richard C.A. Hindmarsh (a1) and Hugh Corr (a1)

Abstract

We present a novel automated processing method for obtaining layer dip from radio-echo sounding (RES) data. The method is robust, easily applicable and can be used to process large (several terabytes) ground and airborne RES datasets using modest computing resources. We give test results from the application of the method to two Antarctic datasets: the Fletcher Promontory ground-based radar dataset and the Wilkes Subglacial Basin airborne radar dataset. The automated RES processing (ARESP) method comprises the basic steps: (1) RES noise reduction; (2) radar layer identification; (3) isolation of individual ‘layer objects’; (4) measurement of orientation and other object properties; (5) elimination of noise in the orientation data; and (6) collation of the valid dip information. The apparent dip datasets produced by the method will aid glaciologists seeking to understand ice-flow dynamics in Greenland and Antarctica: ARESP could enable a shift from selective regional case studies to ice-sheet-scale studies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Automated processing to derive dip angles of englacial radar reflectors in ice sheets
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Automated processing to derive dip angles of englacial radar reflectors in ice sheets
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Automated processing to derive dip angles of englacial radar reflectors in ice sheets
      Available formats
      ×

Copyright

References

Hide All
Bogorodsky, V.V., Bentley, C.R. and Gudmandsen, P.E.. 1985. Radioglaciology. Dordrecht, etc., D. Reidel.
Canny, J. 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal. Machine Intell., 8(6), 679698.
Conway, H., Hall, B.L., Denton, G.H., Gades, A.M. and Waddington, E.D.. 1999. Past and future grounding-line retreat of the West Antarctic ice sheet. Science, 286(5438), 280283.
Corr, H. and 8 others. 2007. Airborne radio-echo sounding of the Wilkes Subglacial Basin, the Transantarctic Mountains, and the Dome C region. Terra Antart. Rep. 13, 5564.
Eisen, O. 2008. Inference of velocity pattern from isochronous layers in firn, using an inverse method. J. Glaciol., 54(187), 613630.
Fahnestock, M.A., Abdalati, W., Luo, S. and Gogineni, S.. 2001. Internal layer tracing and age–depth–accumulation relationships for the northern Greenland ice sheet. J. Geophys. Res., 106(D24), 33,78933,797.
Ferraccioli, F. and 8 others. 2007. Collaborative aerogeophysical campaign targets the Wilkes subglacial basin, the Transantarctic Mountains and the Dome C Region. Terra Antart. Rep. 13, 136.
Hindmarsh, R.C.A., Leysinger Vieli, G.J.M. and Parrenin, F.. 2009. A large-scale numerical model for computing isochrone geometry. Ann. Glaciol., 50(51), 130140.
Lemke, P. and 10 others. 2007. Observations: changes in snow, ice and frozen ground. In Solomon, S. and 7 others, eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, etc., Cambridge University Press, 339383.
Lythe, M.B., Vaughan, D.G. and BEDMAP consortium. 2001. BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res., 106(B6), 11,33511,351.
Martín, C., Hindmarsh, R.C.A. and Navarro, F.J.. 2006. Dating ice flow change near the flow divide at Roosevelt Island, Antarctica, by using a thermomechanical model to predict radar stratigraphy. J. Geophys. Res., 111(F1), F01011. (10.1029/2005JF000326.)
Martín, C., Gudmundsson, G.H., Pritchard, H.D. and Gagliardini, O.. 2009. On the effects of anisotropic rheology on ice flow, internal structure, and the age–depth relationship at ice divides. J. Geophys. Res., 114(F4), F04001. (10.1029/2008JF001204.)
Matsuoka, K., Conway, A.G.H., Catania, G. and Raymond, C.F., 2009. Radar signatures beneath a surface topographic lineation near the outlet of Kamb Ice Stream and Engelhardt Ice Ridge, West Antarctica, Ann. Glaciol., 50(51), 98104.
Nereson, N.A. and Raymond, C.F.. 2001. The elevation history of ice streams and the spatial accumulation pattern along the Siple Coast of West Antarctica inferred from ground-based radar data from three inter-ice-stream ridges. J. Glaciol., 47(157), 303313.
Nereson, N.A., Raymond, C.F., Jacobel, R.W. and Waddington, E.D.. 2000. The accumulation pattern across Siple Dome, West Antarctica, inferred from radar-detected internal layers. J. Glaciol., 46(152), 7587.
Parrenin, F. and Hindmarsh, R.. 2007. Influence of a non-uniform velocity field on isochrone geometry along a steady flowline of an ice sheet. J. Glaciol., 53(183), 612622.
Parrenin, F., Hindmarsh, R.C.A. and Rémy, F.. 2006. Analytical solutions for the effect of topography, accumulation rate and lateral flow divergence on isochrone layer geometry. J. Glaciol., 52(177), 191202.
Rippin, D.M., Siegert, M.J., Bamber, J.L., Vaughan, D.G. and Corr, H.F.J.. 2006. Switch-off of a major enhanced ice flow unit in East Antarctica. Geophys. Res. Lett., 33(15), L15501. (10.1029/2006GL026648.)
Siegert, M.J., Hindmarsh, R. and Hamilton, G.. 2003. Evidence for a large surface ablation zone in central East Antarctica during the last Ice Age. Quat. Res., 59(1), 114121.
Siegert, M.J. and 9 others. 2004. Ice flow direction change in Interior West Antarctica. Science, 305(5692), 19481951.
Sime, L.C. and Ferguson, R.I.. 2003. Information on grain sizes in gravel-bed rivers by automated image analysis. J. Sediment. Res., 73(4), 630636.
Solomon, S. and 7 others, eds. 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, etc., Cambridge University Press.
Waddington, E.D., Neumann, T.A., Koutnik, M.R., Marshall, H.P. and Morse, D.L.. 2007. Inference of accumulation-rate pattern from deep radar layers. J. Glaciol., 53(183), 694712.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed