Skip to main content Accessibility help

Assessing the applicability of terrestrial laser scanning for mapping englacial conduits

  • J. E. KAMINTZIS (a1), J. P. P. JONES (a2), T. D. L. IRVINE-FYNN (a1), T. O. HOLT (a1), P. BUNTING (a1), S. J. A. JENNINGS (a1), P. R. PORTER (a3) and B. HUBBARD (a1)...


The morphology of englacial drainage networks and their temporal evolution are poorly characterised, particularly within cold ice masses. At present, direct observations of englacial channels are restricted in both spatial and temporal resolution. Through novel use of a terrestrial laser scanning (TLS) system, the interior geometry of an englacial channel in Austre Brøggerbreen, Svalbard, was reconstructed and mapped. Twenty-eight laser scan surveys were conducted in March 2016, capturing the glacier surface around a moulin entrance and the uppermost 122 m reach of the adjoining conduit. The resulting point clouds provide detailed 3-D visualisation of the channel with point accuracy of 6.54 mm, despite low (<60%) overall laser returns as a result of the physical and optical properties of the clean ice, snow, hoar frost and sediment surfaces forming the conduit interior. These point clouds are used to map the conduit morphology, enabling extraction of millimetre-to-centimetre scale geometric measurements. The conduit meanders at a depth of 48 m, with a sinuosity of 2.7, exhibiting teardrop shaped cross-section morphology. This improvement upon traditional surveying techniques demonstrates the potential of TLS as an investigative tool to elucidate the nature of glacier hydrological networks, through reconstruction of channel geometry and wall composition.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Assessing the applicability of terrestrial laser scanning for mapping englacial conduits
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Assessing the applicability of terrestrial laser scanning for mapping englacial conduits
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Assessing the applicability of terrestrial laser scanning for mapping englacial conduits
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

Correspondence: J.E. Kamintzis <>


Hide All
Alfoldi, TT (1982) Remote sensing for water quality monitoring. In Johannsen, CJ and Sanders, JL eds. Remote sensing for resource management. Soil Conservation Society of America, Ankey, Iowa, 317328
Asner, GP and Ollinger, SV (2009) Remote sensing for terrestrial biogeochemical modeling. In Warner, TA, Nellis, MD and Foody, GM eds. The SAGE handbook of remote sensing. SAGE Publications Ltd., London, 411422
Bælum, K and Benn, DI (2011) Thermal structure and drainage system of a small valley glacier (Tellbreen, Svalbard), investigated by ground penetrating radar. Cryosphere, 5(1), 139149 (doi: 10.5194/tc-5-139-2011)
Baltsavias, EP (1999) Airborne laser scanning: basic relations and formulas. Int. Soc. Photogramme, 54, 199214 (doi: 10.1016/S0924-2716(99)00015-5)
Barrand, NE, James, TD and Murray, T (2010) Spatio-temporal variability in elevation changes of two high-Arctic valley glaciers. J. Glaciol., 56(199), 771780 (doi: 10.3189/002214310794457362)
BCRA (British Cave Research Association) (2017) BCRA survey grades, BCRA, 03/07/2017 [web page].
Benn, DI, Gulley, JD, Luckman, A, Adamek, A and Glowacki, PS (2009) Englacial drainage systems formed by hydrologically driven crevasse propagation. J. Glaciol., 55(191), 513523 (doi: 10.3189/002214309788816669)
Bingham, RG, Nienow, P, Sharp, M and Boon, S (2005) Subglacial drainage processes at a high Arctic polythermal valley glacier. J. Glaciol., 51(172), 1524 (doi: 10.3189/172756505781829520)
Björnsson, H and 6 others (1996) The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding. J. Glaciol, 42(140), 2332 (doi: 10.1017/s0022143000030495)
Bruland, O and Hagen, JO (2002) Glacial mass balance of Austre Brøggerbreen (Spitsbergen), 1971-1999, modelled with a precipitation-run-off model. Polar Res., 21(1), 109121 (doi: 10.1111/j.1751-8369.2002.tb00070.x)
Buchroithner, MF, Gaisecker, D, Gaisecker, T and Österreich, H (2009) Terrestrial laser scanning for the visualization of a complex dome in an extreme Alpine cave system. Photogramm. Fernerkun, 4, 329339 (doi: 10.1127/1432-8364/2009/0025)
Buckley, SJ, Howell, JA, Enge, HD and Kurz, TH (2008) Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. J. Geol. Soc. London, 165, 625638 (doi: 10.1144/0016-76492007-100)
Catania, GA, Neumann, TA and Price, SF (2008) Characterizing englacial drainage in the ablation zone of the Greenland ice sheet. J. Glaciol., 54(187), 567578 (doi: 10.3189/002214308786570854)
Choudhury, BJ and Chang, ATC (1981) The albedo of snow for partially cloudy skies. Bound.-Layer Meteorol., 20, 371389 (doi: 10.1007/BF00121380)
Choudhury, S, Chakrabarti, D and Choudhury, S (2009) An introduction to geographic information technology. I.K. International Publishing House Pvt. Ltd., New Delhi
CloudCompare (2004) 3D point cloud and mesh processing software, Girardeau-Montaut, D., Open Source Project
Cosso, T, Ferrando, I and Orlando, A (2014) Surveying and mapping a cave using 3d laser scanner: the open challenge with free and open source software. Int. Soc. Photogramme, XL-5, 181186 (doi: 10.5194/isprsarchives-XL-5-181-2014)
Curran, JH and Wohl, EE (2003) Large woody debris and flow resistance in step-pool channels, Cascade Range, Washington. Geomorphology, 51(1–3), 141157 (doi: 10.1016/s0169-555x(02)00333-1)
Das, SB and 6 others (2008) Fracture propagation to the base of the Greenland Ice sheet during supraglacial lake drainage. Science, 320, 778781 (doi: 10.1126/science.1153360)
Deems, JS, Painter, TH and Finnegan, DC (2013) Lidar measurement of snow depth: a review. J. Glaciol., 59(215), 467479 (doi: 10.3189/2013JoG12J154)
Digital Explorer (2016) Google Street View - Ny- Ålesund, March 2016, Google Maps, 03/07/2017 [web page]
ESA (European Space Agency) (2014) Optical properties of ice and snow, ESA, 03/07/2017 [web page].
FARO Technologies Inc. (2011) FARO laser scanner Focus3D manual. FARO Technologies Inc., Barcelona
FARO Technologies Inc. (2013) FARO laser scanner Focus3D X 330 features, benefits and technical specifications. FARO Technologies Inc., Barcelona
FARO Technologies Inc. (2015) SCENE 5.5.3 user manual. FARO Technologies Inc., Barcelona
FARO Technologies Ltd. (2016) SCENE, 5.5.3 software. FARO Technologies Ltd., Warwickshire
Fischer, M, Huss, M, Kummert, M and Hoelzle, M (2016) Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps. Cryosphere, 10(3), 12791295 (doi: 10.5194/tc-10-1279-2016)
Foster, JL, Hall, DK and Chang, ATC (1987) Remote sensing of snow. Eos, Trans. Am. Geophys. Union, 68(32), 682684 (doi: 10.1029/EO068i032p00682-01)
Fountain, AG and Walder, JS (1998) Water flow through temperate glaciers. Rev. Geophys., 36(3), 299328 (doi: 10.1029/97rg03579)
Fountain, AG, Jacobel, RW, Schlichting, R and Jansson, P (2005) Fractures as the main pathways of water flow in temperate glaciers. Nature, 433, 618621 (doi: 10.1038/nature03296)
Gabbud, C, Micheletti, N and Lane, SN (2015) Lidar measurement of surface melt for a temperate Alpine glacier at the seasonal and hourly scales. J. Glaciol., 61(229), 963974 (doi: 10.3189/2015JoG14J226)
Gallay, M, Kaňuk, J, Hochmuth, Z, Meneely, J and Hofierka, J (2015) Large-scale and high-resolution 3-D cave mapping by terrestrial laser scanning: a case study of the Domica Cave, Slovakia. Int. J. Speleol., 44(3), 277291 (doi: 10.5038/1827-806x.44.3.6)
Gibson, PJ (2000) Introductory remote sensing principles and concepts. Routledge, Oxon
Gulley, J (2009) Structural control of englacial conduits in the temperate Matanuska Glacier, Alaska, USA. J. Glaciol., 55(192), 681690 (doi: 10.3189/002214309789470860)
Gulley, JD, Benn, DI, Müller, D and Luckman, A (2009a) A cut-and-closure origin for englacial conduits in uncrevassed regions of polythermal glaciers. J. Glaciol., 55(189), 6680 (doi: 10.3189/002214309788608930)
Gulley, JD, Benn, DI, Screaton, E and Martin, J (2009b) Mechanisms of englacial conduit formation and their implications for subglacial recharge. Quat. Sci. Rev., 28(19–20), 19841999 (doi: 10.1016/j.quascirev.2009.04.002)
Hagen, JO and Sætrang, A (1991) Radio-echo soundings of sub-polar glaciers with low-frequency radar. Polar Res., 9(1), 99107 (doi: 10.3402/polar.v9i1.6782)
Hagen, JO, LiestøL, O, Erik, R and Jørgensen, T (1993) Glacier atlas of Svalbard and Jan Mayen. Norsk Polarinstitutt, Oslo
Harper, JT and Humphrey, NF (1995) Borehole video analysis of a temperate glacier's englacial and subglacial structure: implications for glacier flow models. Geology, 23(10), 901904 (doi: 10.1130/0091-7613(1995)023<0901:BVAOAT>2.3.CO;2)
Heritage, GL and Large, ARG (2009) Laser scanning for the environmental sciences. Wiley-Blackwell, Chichester
Hill, P (2006) International handbook of technical mountaineering. David & Charles Ltd., Cincinnati
Hobbs, PV (1974) Ice physics. Oxford University Press, Oxford
Höfle, B, Geist, T, Rutzinger, M and Pfiefer, N (2007) Glacier surface segmentation using airborne laser scanning point cloud and intensity data. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Espoo, Finland, 36(3), 195–200
Holmlund, P (1988) Internal geometry and evolution of moulins, Storglaciären, Sweden. J. Glaciol., 34(117), 242248 (doi: 10.1017/S0022143000032305)
Hopkinson, C (2004) Place glacier terrain modeling and 3D laser imaging. Otterburn Geographic and Applied Geomatics Research Group, Nova Scotia
Idrees, MO and Pradhan, B (2016) A decade of modern cave surveying with terrestrial laser scanning: a review of sensors, method and application development. Int. J. Speleol., 45(1), 7188 (doi: 10.5038/1827-806x.45.1.1923)
Iken, A and Bindschadler, RA (1986) Combined measurements of subglacial water pressure and surface velocity of Findelengletscher, Switzerland: conclusions about drainage system and sliding mechanism. J. Glaciol., 32(110), 101119 (doi: 10.1017/S0022143000006936)
Irvine-Fynn, TDL, Hodson, AJ, Kohler, J, Porter, PR and Vatne, G (2005) Dye tracing experiments at Midre Lovénbreen, Svalbard: preliminary results and interpretations. 7th GLACKIPR Conference, Moscow, Russia, 36–43
Irvine-Fynn, TDL, Hodson, AJ, Moorman, BJ, Vatne, G and Hubbard, AL (2011) Polythermal glacier hydrology: a review. Rev. Geophys., 49(4), 137 (doi: 10.1029/2010rg000350)
Jansson, P, Hock, R and Schneider, T (2003) The concept of glacier storage: a review. J. Hydrol., 282(1–4), 116129 (doi: 10.1016/s0022-1694(03)00258-0)
Jarosch, AH and Gudmundsson, MT (2012) A numerical model for meltwater channel evolution in glaciers. Cryosphere, 6(2), 493503 (doi: 10.5194/tc-6-493-2012)
Jennings, SJA, Hambrey, MJ, Glasser, NF, James, TD and Hubbard, B (2015) Structural glaciology of Austre Brøggerbreen, northwest Svalbard. J. Maps, 12(5), 790796 (doi: 10.1080/17445647.2015.1076744)
Jörg, P, Fromm, R, Sailer, R and Schaffhauser, A (2006) Measuring snow depth with a terrestrial laser ranging system. In Proceedings of the 2006 International Snow Science Workshop, Telluride, Colorado, 452–460
Joseph, G (2005) Fundamentals of remote sensing. 2nd edn. Universities Press (India) Private Limited, Hyderabad
Judson, D (1974) Cave surveying for expeditions. Geogr. J. 140(2), 292300 (doi: 10.2307/1797087)
Kaasalainen, S, Kaartinen, H and Kukko, A (2008) Snow cover change detection with laser scanning range and brightness measurements. EARSeL eProc., 7, 133141
Karabulut, M and Ceylan, N (2005) The spectral reflectance responses of water with different levels of suspended sediment in the presence of algae. Turkish J. Eng. Environ. Sci., 29, 351360
Kargel, JS, Leonard, GJ, Bishop, MP, Kääb, A and Bruce, H (2014) Global land ice measurements from space. Springer-Verlag Berlin Heidelberg, Berlin
Knighton, AD (1998) Fluvial forms and processes. Hodder Arnold, London
Laserscanning Europe GmbH (2015) Correct resolution for laser scanning, Laserscanning Europe GmbH, 22/09/2017 [web page].
Lemmens, M (2011) Terrestrial laser scanning. Geo-information: technologies, applications and the environment. Springer, The Netherlands, Dordrecht, 101121
Li, J, Youchan, W and Xianjun, G (2012) A new approach for subway tunnel deformation monitoring: high-resolution terrestrial laser scanning. XXII ISPRS Congress, Melbourne, Australia, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 223–228
Lichti, DD, Gordon, SJ and Stewart, MP (2002) Ground-based laser scanners: operation, systems and applications. Geomatica, 56(1), 2133
Lingle, CS and Fatland, DR (2003) Does englacial water storage drive temperate glacier surges? Ann. Glaciol., 36(1), 1420 (doi: 10.3189/172756403781816464)
Lucey, PG and Clark, RN (1985) Spectral properties of water ice and contaminants. In Klinger, J, Benest, D, Dollfus, A and Smoluchowski, R eds. Ices in the solar system. Springer, The Netherlands, Dordrecht, 155168
Mair, D (2005) Thirty-seven year mass balance of Devon Ice Cap, Nunavut, Canada, determined by shallow ice coring and melt modeling. J. Geophys. Res., 110(F1), 113 (doi: 10.1029/2003jf000099)
Mankoff, KD and Tulaczyk, SM (2017) The past, present, and future viscous heat dissipation available for Greenland subglacial conduit formation. Cryosphere, 11(1), 303317 (doi: 10.5194/tc-11-303-2017)
Marston, RA (1983) Supraglacial stream dynamics on the Juneau Icefield. Ann. Assoc. Am. Geogr., 73(4), 597608 (doi: 10.1111/j.1467-8306.1983.tb01861.x)
Maturilli, M, Herber, A and König-Langlo, G (2013) Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard. Earth Syst. Sci. Data, 5(1), 155163 (doi: 10.5194/essd-5-155-2013)
MeshLab (2008) MeshLab: an Open-Source Mesh Processing Tool, Sixth Eurographics Italian Chapter Conference, 129–136
Moorman, BJ and Michel, FA (2000) Glacial hydrological system characterization using ground-penetrating radar. Hydrol. Process, 14, 26452667 (doi: 10.1002/1099-1085(20001030)14:15<2645::AID-HYP84>3.0.CO;2-2)
Müller, D (2007) Incision and closure processes of meltwater channels on the glacier Longyearbreen, Svalbard. (Masters thesis, Technische Universität Braunschweig)
Myreng, SM (2015) Characteristics and long-term evolution of an englacial meltwater channel in a cold-based glacier, Austre Brøggerbreen, Svalbard. (Masters thesis, Norwegian University of Science and Technology)
Naegeli, K, Lovell, H, Zemp, M and Benn, DI (2014) Dendritic subglacial drainage systems in cold glaciers formed by cut-and-closure processes. Geogr. Ann. A, 94(4), 591608 (doi: 10.1111/geoa.12059)
Nienow, P, Sharp, M and Willis, I (1998) Seasonal changes in the morphology of the subglacial drainage system, Haut Glacier d'Arolla, Switzerland. Earth Surf. Process Landf., 23, 825843 (doi: 10.1002/(SICI)1096-9837(199809)23:9<825::AID-ESP893>3.0.CO;2-2)
Nowak, A and Hodson, A (2014) Changes in meltwater chemistry over a 20-year period following a thermal regime switch from polythermal to cold-based glaciation at Austre Brøggerbreen, Svalbard. Polar Res., 33(1), 22779 (doi: 10.3402/polar.v33.22779)
Osterhuber, R, Howle, J and Bawden, G (2008) Snow measurement using ground-based tripod LiDAR. In 76th Annual Western Snow Conference, Hood River, Oregon, 135–138
Pejić, M (2013) Design and optimisation of laser scanning for tunnels geometry inspection. Tunn. Undergr. Space Technol., 37, 199206 (doi: 10.1016/j.tust.2013.04.004)
Petrie, G and Toth, CK (2008) Introduction to laser ranging, profiling and scanning. In Shan, J and Toth, CK eds. Topographic laser ranging and scanning principles and processing. CRC Press, Boca Raton, 128
Pfiefer, N and Briese, C (2007) Laser scanning – principles and applications. GeoSiberia. In International Exhibition and Scientific Congress
Phillips, T, Rajaram, H and Steffen, K (2010) Cryo-hydrologic warming: a potential mechanism for rapid thermal response of ice sheets. Geophys. Res. Lett., 37(20), 15 (doi: 10.1029/2010gl044397)
Picard, G, Libois, Q and Arnaud, L (2016) Refinement of the ice absorption spectrum in the visible using radiance profile measurements in Antarctic snow. Cryosphere, 10(6), 26552672 (doi: 10.5194/tc-10-2655-2016)
Piccini, L, Romeo, A and Badino, G (2002) Moulins and marginal contact caves in the Gornergletscher, Switzerland. Nimbus, 23–24, 9499
Porter, PR, Vatne, G, Ng, F and Irvine-Fynn, TDL (2010) Ice-marginal sediment delivery to the surface of a high-Arctic glacier: Austre Brøggerbreen, Svalbard. Geogr. Ann. A, 92(4), 437449 (doi: 10.1111/j.1468-0459.2010.00406.x)
Prokop, A (2008) Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements. Cold Reg. Sci. Technol., 54(3), 155163 (doi: 10.1016/j.coldregions.2008.07.002)
Pulina, M (1984) Glacierkarst phenomena in Spitsbergen. Norsk Geogr. Tidsskr, 38(3–4), 163168 (doi: 10.1080/00291958408552121)
Resop, JP and Hession, WC (2010) Terrestrial laser scanning for monitoring streambank retreat: comparison with traditional surveying techniques. J. Hydraul. Eng., 136(10), 794798 (doi: 10.1061/(ASCE)HY.1943-7900.0000233)
Robert McNeel & Associates (2017) Rhino3d software, Vol, 5. Robert McNeel & Associates, Barcelona
Schaffhauser, A, and 6 others (2008) Remote sensing based retrieval of snow cover properties. Cold Reg. Sci. Technol., 54(3), 164175 (doi: 10.1016/j.coldregions.2008.07.007)
Schoof, C (2010) Ice-sheet acceleration driven by melt supply variability. Nature, 468(7325), 803806 (doi: 10.1038/nature09618)
Smith, MW (2015) Section 2.1.5. Direct acquisition of elevation data: terrestrial laser scanning. In Cook, SJ, Clarke, LE and Nield, JM eds. Geomorphological techniques (online edition). British Society for Geomorphology, London
Smith, MW and 6 others (2016) Aerodynamic roughness of glacial ice surfaces derived from high-resolution topographic data. J. Geophys. Res.-Earth, 121, 748766 (doi: 10.1002/2015JF003759)
Soudarissanane, S (2016) The geometry of Terrestrial Laser Scanning: Identification of errors, modeling and mitigation of scanning geometry. (Doctoral thesis, Technische Universiteit Delft)
Soudarissanane, S, Lindenbergh, R and Gorte, B (2008) Reducing the error in terrestrial laser scanning by optimizing the measurement set-up. In ISPRS Congress XXXVII, Beijing, 37 (B5), 615–620
Soudarissanane, S, Lindenbergh, R, Menenti, M and Teunissen, P (2011) Scanning geometry: influencing factor on the quality of terrestrial laser scanning points. Int. Soc. Photogramme, 66(4), 389399 (doi: 10.1016/j.isprsjprs.2011.01.005)
Stuart, G (2003) Characterization of englacial channels by ground-penetrating radar: an example from Austre Brøggerbreen, Svalbard. J. Geophys. Res., 108(B11) 2525 (doi: 10.1029/2003jb002435)
Tedesco, M (2015) Electromagnetic properties of the components of the cryosphere. In Tedesco, M ed. Remote sensing of the cryosphere. pp. 1730, John Wiley & Sons, Ltd., Chichester (doi: 10.1002/9781118368909.ch2)
Vatne, G (2001) Geometry of englacial water conduits, Austre Brøggerbreen, Svalbard. Norsk Geogr. Tidsskr, 55(2), 8593 (doi: 10.1080/713786833)
Vatne, G and Irvine-Fynn, TDL (2016) Morphological dynamics of an englacial channel. Hydrol. Earth Syst. Sci, 20(7), 29472964 (doi: 10.5194/hess-20-2947-2016)
Vatne, G and Refsnes, I (2003) Channel pattern and geometry of englacial conduits. In 6 th International Symposium ‘Glacier caves and karst in Polar Regions’, Ny-Ålesund, Svalbard, 181–188
Vosselman, G and Maas, H-G (2010) Airborne and terrestrial laser scanning. Whittles Publishing, Caithness
Warild, A (2007) Surveying. Vertical, eBook,
Warren, SG (1982) Optical properties of snow. Rev. Geophys., 20(1), 6789 (doi: 10.1029/RG020i001p00067)
Warren, SG and Wiscombe, WJ (1981) A model for the spectral albedo of snow. II: snow containing atmospheric aerosols. J. Atmos. Sci., 37, 27342745 (doi: 10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2)
Wehr, A (2008) LIDAR: airborne and terrestrial sensors. In Li, Z, Chen, J and Baltsavias, EP, eds. Advances in photogrammetry, remote sensing and spatial information sciences: 2008 ISPRS congress book. Taylor & Francis Group, London, 7384
Willis, IC, Sharp, MJ and Richards, KS (1990) Configuration of the drainage system of Midtdalsbreen, Norway, as indicated by dye-tracing experiments. J. Glaciol., 36(122), 89101 (doi: 10.1017/s0022143000005608)
Zwally, HJ, Abdalati, W, Herring, T, K L, , Saba, J and Steffen, K (2002) Surface melt-induced acceleration of Greenland Ice-sheet flow. Science, 297, 218222 (doi: 10.1126/science.1072708)



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed