Skip to main content Accessibility help
×
Home

Airborne and spaceborne DEM- and laser altimetry-derived surface elevation and volume changes of the Bering Glacier system, Alaska, USA, and Yukon, Canada, 1972–2006

  • Reginald R. Muskett (a1), Craig S. Lingle (a1), Jeanne M. Sauber (a2), Austin S. Post (a3), Wendell V. Tangborn (a4), Bernhard T. Rabus (a5) and Keith A. Echelmeyer (a1)...

Abstract

Using airborne and spaceborne high-resolution digital elevation models and laser altimetry, we present estimates of interannual and multi-decadal surface elevation changes on the Bering Glacier system, Alaska, USA, and Yukon, Canada, from 1972 to 2006. We find: (1) the rate of lowering during 1972–95 was 0.9 ± 0.1 m a−1; (2) this rate accelerated to 3.0 ± 0.7 m a−1 during 1995–2000; and (3) during 2000–03 the lowering rate was 1.5 ± 0.4 m a−1. From 1972 to 2003, 70% of the area of the system experienced a volume loss of 191 ± 17 km3, which was an area-average surface elevation lowering of 1.7 ± 0.2 m a−1. From November 2004 to November 2006, surface elevations across Bering Glacier, from McIntosh Peak on the south to Waxell Ridge on the north, rose as much as 53 m. Up-glacier on Bagley Ice Valley about 10 km east of Juniper Island nunatak, surface elevations lowered as much as 28 m from October 2003 to October 2006. NASA Terra/MODIS observations from May to September 2006 indicated muddy outburst floods from the Bering terminus into Vitus Lake. This suggests basal–englacial hydrologic storage changes were a contributing factor in the surface elevation changes in the fall of 2006.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Airborne and spaceborne DEM- and laser altimetry-derived surface elevation and volume changes of the Bering Glacier system, Alaska, USA, and Yukon, Canada, 1972–2006
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Airborne and spaceborne DEM- and laser altimetry-derived surface elevation and volume changes of the Bering Glacier system, Alaska, USA, and Yukon, Canada, 1972–2006
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Airborne and spaceborne DEM- and laser altimetry-derived surface elevation and volume changes of the Bering Glacier system, Alaska, USA, and Yukon, Canada, 1972–2006
      Available formats
      ×

Copyright

References

Hide All
Abrams, M. and Hook, S.. 2002. ASTER user’s handbook,Version 2. Pasadena, CA, NASA Jet Propulsion Laboratory.
Alford, D. 1967. Density variations in alpine snow. J. Glaciol., 6(46), 495503.
Anonymous. 1969. Mass-balance terms. J. Glaciol., 8(52), 37.
Arendt, A.A., Echelmeyer, K.A., Harrison, W.D., Lingle, C.S. and Valentine, V.B.. 2002. Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science, 297(5580), 382386.
Arendt, A. and 7 others. 2006. Updated estimates of glacier volume changes in the western Chugach Mountains, Alaska, and a comparison of regional extrapolation methods. J. Geophys. Res., 111(F3), F03019. (10.1029/2005JF000436.)
Bader, H. 1954. Sorge’s Law of densification of snow on high polar glaciers. J. Glaciol., 2(15), 319323.
Bartholomaus, T.C., Anderson, R.S. and Anderson, S.P.. 2008. Response of glacier basal motion to transient water storage. Nature Geosci., 1(1), 3337.
Beedle, M.J. and 7 others. 2008. Improving estimation of glacier volume change: a GLIMS case study of Bering Glacier System, Alaska. Cryosphere, 2(1), 3351.
Echelmeyer, K.A. and 8 others. 1996. Airborne surface profiling of glaciers: a case-study in Alaska. J. Glaciol., 42(142), 538547.
Eineder, M., Breit, H., Adam, N., Holzner, J., Suchandt, S. and Rabus, B.. 2001. SRTM X-SAR calibration results. In Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS 2001), 9–13 July 2001, Sydney, Australia. Vol. 2. Piscataway, NJ, Institute of Electrical and Electronics Engineers, 748750.
Farr, T.G. and 17 others. 2007. The Shuttle Radar Topography Mission. Rev. Geophys., 45(2), RG2004. (10.1029/ 2005RG000183.)
Fatland, D.R. 1998. Studies of Bagley Icefield during surge and Black Rapids Glacier, Alaska, using spaceborne SAR interferometry. (PhD thesis, University of Alaska Fairbanks.)
Fatland, D.R. and Lingle, C.S.. 2002. InSAR observations of the 1993–95 Bering Glacier (Alaska, U.S.A.) surge and a surge hypothesis. J. Glaciol., 48(162), 439451.
Fountain, A.G. and Walder, J.S.. 1998. Water flow through temperate glaciers. Rev. Geophys., 36(3), 299328.
Fricker, H.A., Scambos, T., Bindschadler, R. and Padman, L.. 2007. An active subglacial water system in West Antarctica mapped from space. Science, 315(5818), 15441548.
Geudtner, D., Zink, M., Gierull, C. and Shaffer, S.. 2002. Interferometric alignment of the X-SAR antenna system on the space shuttle radar topography mission. IEEE Trans. Geosci. Remote Sens., 40(5), 9951006.
Harrison, W.D. and Post, A.S.. 2003. How much do we really know about glacier surging? Ann. Glaciol., 36, 16.
Helm, A., Braun, A., Eickschen, S. and Schöne, T.. 2002. Calibration of the shuttle radar topography mission X-SAR instrument using a synthetic altimetry data model. Can. J. Remote Sens., 28(4), 573580.
Intermap Technologies Corporation. 2006. Global terrain product handbook. Ottawa, Ont., Intermap Technologies Corp.
Kavanaugh, J.L. and Clarke, G.K.C.. 2000. Evidence for extreme pressure pulses in the subglacial water system. J. Glaciol., 46(153), 206212.
Kieffer, H.H., Mullins, K.F. and MacKinnon, D.J.. 2008. Validation of the ASTER instrument level 1A scene geometry. Photogramm. Eng. Remote Sens., 74(3), 289302.
Li, S. 1999. Summer environmental mapping potential of a large-scale ERS-1 SAR mosaic of the state of Alaska. Int. J. Remote Sensing, 20(2), 387401.
Lingle, C.S. and Fatland, D.R.. 2003. Does englacial water storage drive temperate glacier surges? Ann. Glaciol., 36, 1420.
Liversedge, L.K. 2007. Turbidity mapping and prediction in ice marginal lakes at the Bering Glacier system, Alaska. (MS thesis, University of Michigan.)
Matthews, J.P., Yang, X.-D., Shen, J. and Awaji, T.. 2008. Structured Sun glitter recorded in an ASTER along-track stereo image of Nam Co Lake (Tibet): an interpretation based on supercritical flow over a lake floor depression. J. Geophys. Res., 113(C1), C01019. (10.1029/2007JC004204.)
Meier, M.F. 1962. Proposed definitions for glacier mass budget terms. J. Glaciol., 4(33), 252263.
Molnia, B. F. 2001. Glaciers of Alaska. Alaska Geogr., 28(2).
Molnia, B.F. and Post, A.. 1995. Holocene history of Bering Glacier, Alaska: a prelude to the 1993–1994 surge. Phys. Geogr., 16(2), 87117.
Moore, G.W.K., Holdsworth, G. and Alverson, K.. 2002. Climate change in the North Pacific region over the past three centuries. Nature, 420(6914), 401403.
Muskett, R. 2007. Mass balances and dynamic changes of the Bering, Malaspina, and Icy Bay glacier systems of Alaska, U.S.A., and Yukon, Canada. (PhD thesis, University of Alaska Fairbanks.)
Muskett, R.R., Lingle, C.S., Tangborn, W.V. and Rabus, B.T.. 2003. Multi-decadal elevation changes on Bagley Ice Valley and Malaspina Glacier, Alaska. Geophys. Res. Lett., 30(16), 1857. (10.1029/2003GL017707.)
Muskett, R.R., Lingle, C.S., Sauber, J.M., Rabus, B.T. and Tangborn, W.V.. 2008a. Acceleration of surface lowering on the tidewater glaciers of Icy Bay, Alaska, U.S.A. from InSAR DEMs and ICESat altimetry. Earth Planet. Sci. Lett., 265(3–4), 345359.
Muskett, R.R., Lingle, C.S., Sauber, J.M., Post, A.S., Tangborn, W.V. and Rabus, B.T.. 2008b. Surging, accelerating surface lowering and volume reduction of the Malaspina Glacier system, Alaska, USA, and Yukon, Canada, from 1972 to 2006. J. Glaciol., 54(188), 788800.
National Imagery and Mapping Agency (NIMA). 2000. Department of Defense World Geodetic System 1984: its definition and relationships with local geodetic systems. Third edition. Washington, DC, Department of Defense. (NIMA Tech. Rep. 8350.2.)
Natural Resources Canada. 1996. Standards and specifications of the National Topographic Data Base, Version 3.1. Ottawa, Ont., Natural Resources Canada. Centre for Topographical Information.
Partington, K.C. 1998. Discrimination of glacier facies using multi-temporal SAR data. J. Glaciol., 44(146), 4253.
Post, A. 1972. Periodic surge origin of folded medial moraines on Bering piedmont glacier, Alaska. J. Glaciol., 11(62), 219226.
Rabus, B., Eineder, M., Roth, A. and Bamler, R.. 2003. The shuttle radar topography mission - a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Eng. Remote Sens., 57(4), 241262.
Rapp, R.H. 1998. The EGM96 geoid undulation with respect to the SGS84 ellipsoid. NASA Tech. Pap. 1998–206861, ch.11, 16.
Raymond, C.F. 1987. How do glaciers surge? A review. J. Geophys. Res., 92(B9), 91219134.
Rignot, E.J.M. and van Zyl, J.J.. 1993. Change detection techniques for ERS-1 SAR data. IEEE Trans. Geosci. Remote Sens., 31(4), 896906.
Rignot, E., Echelmeyer, K. and Krabill, W.. 2001. Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophys. Res. Lett., 28(18), 35013504.
Roberts, M.J. 2005. Jokulhlaups: a reassessment of floodwater flow through glaciers. Rev. Geophys., 43(1), RG1002. (10.1029/2003RG000147.)
Roth, A., Eineder, A., Rabus, B., Mikusch, E. and Schattler, B.. 2001. SRTM/X-SAR: products and processing facility. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS 2001), 9–13 July 2001, Sydney, Australia. Vol. 2. Piscataway, NJ, Institute of Electrical and Electronic Engineers, 745747.
Roush, J.J., Lingle, C.S., Guritz, R.M., Fatland, D.R. and Voronina, V.A.. 2003. Surge-front propagation and velocities during the early-1993–95 surge of Bering Glacier, Alaska, U.S.A., from sequential SAR imagery. Ann. Glaciol., 36, 3744.
Scambos, T.A., Bohlander, J.A., Shuman, C.A. and Skvarca, P.. 2004. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett., 31(18), L18402. (10.1029/2004GL020670.)
Schutz, B.E., Zwally, H.J., Shuman, C.A., Hancock, D. and DiMarzio, J.P.. 2005. Overview of the ICESat Mission. Geophys. Res. Lett., 32(21), L21S01. (10.1029/2005GL024009.)
Sharp, R.P. 1951. Accumulation and ablation on the Seward-Malaspina Glacier system, Canada-Alaska. Geol. Soc. Am. Bull., 62(7), 725743.
Sharp, R.P. 1958. Malaspina Glacier, Alaska. Geol. Soc. Am. Bull., 69(2), 617646.
Smith, D.A. and Roman, D.R.. 2001. GEOID99 and G99SSS: 1-arc-minute geoid models for the United States. J. Geod., 75(9–10), 469490.
Tangborn, W. 1999. A mass balance model that uses low-altitude meteorological observations and the area-altitude distribution of a glacier. Geogr. Ann., 81A(4), 753765.
Toller, G.N. and Isaacman, A.. 2003. MODIS Level 1B product user’s guide. Greenbelt, MD, NASA Goddard Space Flight Center.
Toutin, T. 2008. ASTER DEMs for geomatic and geoscientific applications: a review. Int. J. Remote Sensing, 29(7), 18551875.
US Geological Survey (USGS). 1990. Digital elevation models: data users’ guide 5. Reston, VA, US Department of the Interior. US Geological Survey.
Yamaguchi, Y., Kahle, A.B., Tsu, H., Kawakami, T. and Pniel, M.. 1998. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens., 36(4), 10621071.
Zhang, J., Bhatt, U.S., Tangborn, W.V. and Lingle, C.S.. 2007. Climate downscaling for estimating glacier mass balances in north-western North America: validation with a USGS benchmark glacier. Geophys. Res. Lett., 34(21), L21505. (10.1029/ 2007GL031139).
Zwally, H.J. and Li, J.. 2002. Seasonal and interannual variations of firn densification and ice-sheet surface elevation at Greenland summit. J. Glaciol., 48(161), 199207.

Airborne and spaceborne DEM- and laser altimetry-derived surface elevation and volume changes of the Bering Glacier system, Alaska, USA, and Yukon, Canada, 1972–2006

  • Reginald R. Muskett (a1), Craig S. Lingle (a1), Jeanne M. Sauber (a2), Austin S. Post (a3), Wendell V. Tangborn (a4), Bernhard T. Rabus (a5) and Keith A. Echelmeyer (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed