Skip to main content Accessibility help

A tutorial on computational classical logic and the sequent calculus

  • PAUL DOWNEN (a1) and ZENA M. ARIOLA (a1)


We present a model of computation that heavily emphasizes the concept of duality and the interaction between opposites–production interacts with consumption. The symmetry of this framework naturally explains more complicated features of programming languages through relatively familiar concepts. For example, binding a value to a variable is dual to manipulating the flow of control in a program. By looking at the computational interpretation of the sequent calculus, we find a language that lets us speak about duality, control flow, and evaluation order in programs as first-class concepts.

We begin by reviewing Gentzen's LK sequent calculus and show how the Curry–Howard isomorphism still applies to give us a different basis for expressing computation. We then illustrate how the fundamental dilemma of computation in the sequent calculus gives rise to a duality between evaluation strategies: strict languages are dual to lazy languages. Finally, we discuss how the concept of focusing, developed in the setting of proof search, is related to the idea of type safety for computation expressed in the sequent calculus. In this regard, we compare and contrast two different methods of focusing that have appeared in the literature, static and dynamic focusing, and illustrate how they are two means to the same end.



Hide All
Andreoli, J.-M. (1992) Logic programming with focusing proofs in linear logic. J. Log. Comput. 2 (3), 297347. doi: 10.1093/logcom/2.3.297.
Appel, A. W. (1992) Compiling with Continuations. New York, NY, USA, 1992: Cambridge University Press. ISBN 0-521-41695-7.
Ariola, Z. M. & Herbelin, H. (2003) Minimal classical logic and control operators. In Proceedings of 30th International Colloquium in Automata, Languages and Programming:(ICALP 2003). Berlin, Heidelberg: Springer, p. 871885. ISBN 978-3-540-45061-0. doi:10.1007/3-540-45061-068.
Ariola, Z. M., Bohannon, A. & Sabry, A. (2009) Sequent calculi and abstract machines. ACM Trans. Program. Lang. Syst. 31 (4), 13:113:48. ISSN 0164-0925. doi: 10.1145/1516507.1516508.
Ariola, Z. M., Herbelin, H. & Saurin, A. (2011) Classical call-by-need and duality. In Proceedings of 10th International Conference in Typed Lambda Calculi and Applications (TLCA '11). Berlin, Heidelberg: Springer, pp. 27–44. ISBN 978-3-642-21690-9. doi: 10.1007/978-3-642-21691-6_6.
Ariola, Z. M., Maraist, J., Odersky, M., Felleisen, M., & Wadler, P. (1995) A call-by-need lambda calculus. In Proceedings of 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '95). New York, NY, USA: ACM, pp. 233–246. ISBN 0-89791-692-1. doi: 10.1145/199448.199507.
Church, A. (1932) A set of postulates for the foundation of logic. Ann. Math. 33 (2), 346366. doi: 10.2307/1968337.
Curien, P.-L. & Herbelin, H. (2000) The duality of computation. In Proceedings of 5th ACM SIGPLAN International Conference on Functional Programming (ICFP '00). New York, NY, USA: ACM, pp. 233–243. ISBN 1-58113-202-6. doi: 10.1145/351240.351262.
Curien, P.-L. & Munch-Maccagnoni, G. (2010) The duality of computation under focus. In Proceedings of 6th IFIP TC 1/WG 2.2 International Conference in Theoretical Computer Science (TCS '10). Held as Part of WCC 2010, TCS, Berlin Heidelberg: Springer, pp. 165–181. ISBN 978-3-642-15240-5. doi: 10.1007/978-3-642-15240-5_13.
Curry, H. B., Feys, R. & Craig, W. (1958) Combinatory Logic, vol. 1. North-Holland Publishing Company.
Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., & Zadeck, F. K. (1991) Efficiently computing static single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst. 13 (4), 451490. ISSN 0164-0925. doi: 10.1145/115372.115320.
de Bruijn, N. (1968) AUTOMATH, A Language for Mathematics. Technical Report 66-WSK-05, Technological University Eindhoven.
Downen, P. & Ariola, Z. M. (2014) The duality of construction. In Proceedings of 23rd European Symposium on Programming in Programming Languages and Systems (ESOP '14). Held as Part of the European Joint Conferences on Theory and Practice of Software, Lecture Notes in Computer Science, vol. 8410, Berlin Heidelberg: Springer, pp. 249–269. ISBN 978-3-642-54832-1. doi: 10.1007/978-3-642-54833-8_14.
Downen, P., Johnson-Freyd, P. & Ariola, Z. M. (2015) Structures for structural recursion. In Proceedings of 20th ACM SIGPLAN International Conference on Functional Programming (ICFP '15). New York, NY, USA: ACM, pp. 127–139. ISBN 978-1-4503-3669-7. doi: 10.1145/2784731.2784762.
Downen, P., Maurer, L., Ariola, Z. M. & Peyton Jones, S. (2016) Sequent calculus as a compiler intermediate language. In Proceedings of 21st ACM SIGPLAN International Conference on Functional Programming (ICFP '16). New York, NY, USA: ACM, pp. 74–88. ISBN 978-1-4503-4219-3. doi: 10.1145/2951913.2951931.
Felleisen, M. & Friedman, D. P. (1986) Control operators, the SECD machine, and the λ-calculus. In Proceedings of the IFIP TC 2/WG2.2 Working Conference on Formal Descriptions of Programming Concepts Part III, pp. 193–219.
Felleisen, M. & Hieb, R. (1992) The revised report on the syntactic theories of sequential control and state. Theor. Comput. Sci. 103 (2), 235271. ISSN 0304-3975. doi: 10.1016/0304-3975(92)90014-7.
Filinski, A. (1989) Declarative Continuations and Categorical Duality. Master's thesis, Computer Science Department, University of Copenhagen, 1989.
Gentzen, G. (1935a) Untersuchungen über das logische schließen. I. Math. Z. 39 (1), 176210. ISSN 0025-5874. doi: 10.1007/BF01201353.
Gentzen, G. (1935b) Untersuchungen über das logische schließen. II. Math. Z. 39 (1), 405431. ISSN 0025-5874. doi: 10.1007/BF01201363.
Girard, J.-Y. (1987) Linear logic. Theor. Comput. Sci. 50 (1):1101. ISSN 0304-3975. doi:10.1016/0304-3975(87)90045-4.
Girard, J.-Y. (1991) A new constructive logic: Classical logic. Math. Struct. Comput. Sci. 1 (3), 255296. doi: 10.1017/S0960129500001328.
Girard, J.-Y. (1993) On the unity of logic. Ann. Pure Appl. Log. 59 (3), 201217. ISSN 0168-0072. doi: 10.1016/0168-0072(93)90093-S.
Girard, J.-Y. (2001) Locus solum: From the rules of logic to the logic of rules. Math. Struct. Comput. Sci. 11 (3), 301506. ISSN 0960-1295. doi: 10.1017/S096012950100336X.
Girard, J.-Y., Taylor, P. & Lafont, Y. (1989) Proofs and Types. New York, USA: Cambridge University Press. ISBN 0-521-37181-3.
Graham-Lengrand, S. (2016) The Curry-Howard view of classical logic: A short introduction. Lecture Notes for the MPRI course on Curry-Howard correspondence for Classical Logic. URL Unpublished Manuscript.
Griffin, T. G. (1990) A formulae-as-types notion of control. In Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '90, New York, NY, USA: ACM, pp. 47–58. ISBN 0-89791-343-4. doi: 10.1145/96709.96714.
Herbelin, H. (1995) Séquents qu'on calcule: de l'interprétation du calcul des séquents comme calcul de λ-termes et comme calcul de stratégies gagnantes. PhD thesis, Université Paris 7, January 1995.
Herbelin, H. (2005) C'est maintenant qu'on calcule : Au coeur de la dualité. Habilitation thesis, Université Paris 11, 2005.
Howard, W. A. (1980) The formulae-as-types notion of constructions. In To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, pp. 479–490. ISBN 0123490502. Unpublished manuscript of 1969.
Kelsey, R., et al. (1998) Revised5 report on the algorithmic language Scheme. Higher-Order and Symb. Comput. 11 (1), 7105. ISSN 1573-0557. doi: 10.1023/A:1010051815785.
Kennedy, A. (2007) Compiling with continuations, continued. In Proceedings of the 12th ACM SIGPLAN International Conference on Functional Programming, ICFP '07, New York, NY, USA: ACM, pp. 177–190. ISBN 978-1-59593-815-2. doi: 10.1145/1291151.1291179.
Krivine, J.-L. (2007) A call-by-name lambda-calculus machine. Higher-Order Symb. Comput. 20 (3), 199207. ISSN 1388-3690. doi: 10.1007/s10990-007-9018-9.
Laurent, O. (2002) Étude de la polarisation en logique. PhD thesis, Université de la Méditerranée - Aix-Marseille II.
Munch-Maccagnoni, G. (2009) Focalisation and classical realisability. In Computer Science Logic: 23rd international Workshop, CSL 2009, 18th Annual Conference of the EACSL, CSL 2009, Berlin Heidelberg: Springer, pp. 409–423. ISBN 978-3-642-04027-6. doi: 10.1007/978-3-642-04027-6_30.
Munch-Maccagnoni, G. & Scherer, G. (2015) Polarised intermediate representation of lambda calculus with sums. In Proceedings of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, pp. 127–140. doi: 10.1109/LICS.2015.22.
Ohori, A. (1999) The logical abstract machine: A Curry-Howard isomorphism for machine code. In Functional and Logic Programming: 4th Fuji International Symposium, FLOPS '99, Berlin, Heidelberg: Springer, pp. 300–318. ISBN 978-3-540-47950-5. doi: 10.1007/10705424_20.
Ohori, A. (2003) Register allocation by proof transformation. In Programming Languages and Systems: 12th European Symposium on Programming, ESOP 2003 Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2003, ESOP 2003, Berlin Heidelberg: Springer, pp. 399–413. ISBN 978-3-540-36575-4. doi: 10.1007/3-540-36575-3_27.
Parigot, M. (1992) l m-calculus: An algorithmic interpretation of classical natural deduction. In Logic Programming and Automated Reasoning: International Conference, LPAR '92, pages 190–201, Berlin, Heidelberg, July 1992. Springer Berlin Heidelberg. ISBN 978-3-540-47279-7. doi:10.1007/BFb0013061.
Peyton Jones, S., Tolmach, A. & Hoare, T. (2001) Playing by the rules: Rewriting as a practical optimisation technique in GHC. In Haskell Workshop 2001. ACM SIGPLAN.
Pfenning, F. (2010a) Lecture notes on focusing. Lecture notes for the Oregon Programming Languages Summer School 2010 course on Proof Theory Foundations, Lecture 4. URL Unpublished Manuscript.
Pfenning, F. (2010b) Lecture notes on sequent calculus. Lecture Notes for the Carnegie Mellon University course 15-816 on Modal Logic, Lecture 8. URL Unpublished Manuscript.
Emmanuel, P. (2004) Explicit Substitutions, Logic and Normalization. PhD thesis, Université Paris-Diderot – Paris VII, Jun. 2004.
Reynolds, J. C. (1983) Types, abstraction and parametric polymorphism. In Proceedings of the IFIP 9th World Computer Congress, Information Processing 83. Amsterdam: Elsevier Science Publishers B. V. (North-Holland), pp. 513–523.
Reynolds, J. C. (1993) The discoveries of continuations. Lisp and Symbol. Comput. 6 (3–4), 233248. ISSN 0892-4635. doi: 10.1007/BF01019459. URL
Reynolds, J. C. (1998) Definitional interpreters for higher-order programming languages. Higher-Order Symbol. Comput. 11 (4), 363397. ISSN 1388-3690. doi: 10.1023/A:1010027404223.
Scherer, G. (2016) Which Types Have a Unique Inhabitant? Focusing on Pure Program Equivalence. PhD thesis, Université Paris-Diderot.
Selinger, P. (2001) categories, Control and duality: On the categorical semantics of the lambda-mu calculus. Math. Struct. Comput. Sci. 11 (2), 207260. ISSN 0960-1295. doi: 10.1017/S096012950000311X.
Selinger, P. (2003) Some remarks on control categories, 2003. URL http://mathstat.dalca/~selinger/papers/controlremarks.pdf. Unpublished Manuscript.
Singh, S., Peyton Jones, S., Norell, U., Pottier, F., Meijer, E., & McBride, C. (2011) Sexy types–-are we done yet? Software Summit. URL
Wadler, P. (2003) Call-by-value is dual to call-by-name. In Proceedings of the 8th ACM SIGPLAN International Conference on Functional Programming. New York, NY, USA: ACM, pp. 189–201. ISBN 1-58113-756-7. doi: 10.1145/944705.944723.
Wadler, P. (2005) Call-by-value is dual to call-by-name, reloaded. In Proceedings of 16th International Conference in Term Rewriting and Applications (RTA '05)., Berlin Heidelberg: Springer, pp. 185–203. ISBN 978-3-540-32033-3. doi: 10.1007/978-3-540-32033-3_15. URL
Wright, A. K. & Felleisen, M. (1994) A syntactic approach to type soundness. Inform. Comput. 115 (1), 3894. ISSN 0890-5401. doi: 10.1006/inco.1994.1093.
Zeilberger, N. (2009) The Logical Basis of Evaluation Order and Pattern-Matching. PhD thesis, Carnegie Mellon University.
Zeilberger, N. (2013) Polarity in proof theory and programming. Lecture Notes for the Summer School on Linear Logic and Geometry of Interaction in Torino, Italy. URL Unpublished Manuscript.

Related content

Powered by UNSILO

A tutorial on computational classical logic and the sequent calculus

  • PAUL DOWNEN (a1) and ZENA M. ARIOLA (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

A tutorial on computational classical logic and the sequent calculus

  • PAUL DOWNEN (a1) and ZENA M. ARIOLA (a1)
Submit a response


No Discussions have been published for this article.


Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *