Skip to main content Accessibility help
×
Home

Fractal image compression

  • C. E. MARTIN (a1) and S. A. CURTIS (a2)

Abstract

This paper describes some experiences of using fractal image compression as the subject of an assignment for a functional programming course using Haskell. The students were fascinated by the reproduction of images from their encodings and engaged well with the exercise which involved only elementary functional programming techniques.

Copyright

References

Hide All
Baelde, D. & Mimram, S. (2011) Fractal compressor. Accessed March 26, 2013. Available at: http://fractcompr.sourceforge.net/.
Barnes, C., Shechtman, E., Finkelstein, A. & Goldman, D. B. (2009) PatchMatch: a Randomized Correspondence Algorithm for Structural Image Editing. ACM Trans. Graph. 28, 3 (Article 24).
Barnsley, M. F. (1988) Fractals Everywhere. Waltham, MA: Academic Press.
Barnsley, M. F. (2011) Superfractals. Waltham, MA: Academic Press. Accessed March 20, 2013. Available at: http://www.superfractals.com/.
Barnsley, M. F. & Hurd, L. P. (1992) Fractal Image Compression. Natick, MA: AK Peters.
Bentley, J. (1975) Multidimensional binary search trees used for associative searching. Commun. ACM 18 (9), 509517.
Cardinal, J. (1999) Faster fractal image coding using similarity search in a KL-transformed feature space. In Fractals: Theory and Applications in Engineering, Dekking, M. (eds). New York, NY: Springer, pp. 293306.
Curtis, S. A. & Martin, C. E. (2005) Functional fractal image compression. In Proceedings of the 6th Symposium on Trends in Functional Programming (TFP 2005), Tallinn, Estonia, pp. 393398.
Davoine, J. (1997) How to improve pixel-based fractal image coding with adaptive partitions. In Fractals in Engineering: From Theory to Industrial Applications, Lévy Véhel, J., Lutton, E. and Tricot, C. (eds). Berlin, Germany: Springer-Verlag, pp. 292306.
Elliot, C. (2003) Functional images. In The Fun of Programming, Gibbons, J. & de Moor, O. (eds). Sydney Australia: Palgrave Macmillan, pp. 131150.
Fisher, Y. (1995) Fractal Image Compression. Theory and Application. Nerw York, NY: Springer.
Fractal Foundation. (2011) Accessed March 14, 2013. Available at: http://www.fractalfoundation.org.
Frame, M. & Mandelbrot, B. B. (2002) Fractals, Graphics, and Mathematics Education, Mathematical Association of America Notes, vol. 58. Cambridge, UK: Cambridge University Press.
Ghosh, S. K., Mukhopadhyay, J., Chowdary, V. M. & Jeyaram, A. (2002) Relative fractal coding and its application in satellite image compression. In Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP), India.
GIMP (2012) The GNU Image Manipulation Program (version 2.8.2). Accessed October 23, 2013. Available at: http://www.gimp.org.
Hafner, U. (2000). Fiasco. Accessed February 21, 2013. Available at: http://github.com/megatherion/Fiasco/.
Hudak, P. (2000) The Haskell School of Expression. Cambridge, UK: Cambridge University Press.
Hugs (2006) The Hugs 98 System. Available at: http://haskell.org/hugs/.
Hutton, G. (2007) Programming in Haskell. Cambridge, UK: Cambridge University Press.
Jacquin, A. (1989) A Fractal Theory of Iterated Markov Operators with Applications to Digital Image Coding. PhD thesis, Georgia Institute of Technology, Atlanta, GA.
Jones, M. P. (2004) Composing Fractals. J. Funct. Program. 14 (6), 715725.
Kanakarakis, I., Ntanasis, P. & Sarbinowski, P. (2011) Fractal image compression. Accessed March 26, 2013. Available at: http://github.com/c00kiemon5ter/Fractal-Image-Compression
Kaplan, K. (1997) Fractals are emerging as a shape of things to come. LA Times May 12, 1997. Accessed October 23, 2013. Available at: http://articles.latimes.com/1997-05-12/business/fi-58093_1_fractal-compression.
Lindenmayer, A. (1968) Mathematical models for cellular interaction in development, Parts I and II. J. Theor. Biol. 18, 280315.
Liu, D. & Jimack, P. K. (2007) A survey of parallel algorithms for fractal image compression. J. Algorithms Comput. Technol. 1, 171186.
Lu, N. (1997) Fractal Imaging. Waltham, MA: Academic Press.
Mandelbrot, B. B. (1977) Fractals, Form, Chance and Dimension. New York, NY: W. H. Freeman.
Mandelbrot, B. B. (1983) The Fractal Geometry of Nature. New York, NY: W. H. Freeman.
Microsoft (2009) Microsoft encarta. Accessed March 21, 2013. Available at: http://microsoft.com/uk/encarta/
Munroe, R. (2006) Su Doku. xkcd. Accessed October 23, 2013. Available at: http://xkcd.com/74/
Olson, C. F. (2006) Encouraging the development of undergraduate researchers in computer vision. In Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education (ITICSE '06). New York, NY: ACM, pp. 255259.
OnOne Software (2013) Perfect resize. Accessed February 21, 2013. Available at: http://www.ononesoftware.com/products/perfect-resize/
Peitgen, H.-O., Jürgens, H. & Saupe, D. (1991) Fractals for the Classroom, Part One. New York, NY: Springer-Verlag.
Peitgen, H.-O., Jürgens, H. & Saupe, D. (1992) Fractals for the Classroom, Part Two. New York, NY: Springer-Verlag.
Peyton Jones, S. (ed) (2003) Haskell 98 Language and Libraries: The Revised Report. Cambridge, UK: Cambridge University Press.
Rasala, R. (2000, March) Toolkits in first year computer science: A pedagogical imperative. In Proceedings of the 31st SIGCSE Technical Symposium on Computer Science Education, 2000, (SIGCSE '00) Austin, Texas, Vol. 32 Issue 1. New York, NY: ACM, pp. 185191.
Saupe, D. (1994) Breaking the Time Complexity of Fractal Image Compression. Technical Report 53, Institut für Informatik Freiburg, Freiburg, Germany.
Skiljan, I. (2012) IrfanView (version 4.33). Accessed October 23, 2013. Available at: http://www.irfanview.com
Stanford (2013) Nifty assignments. Accessed February 21, 2013 Available at: http://nifty.stanford.edu/
Still, M. (2005) The Definitive Guide to ImageMagick. New York, NY: Apress.
Thalabard, S. & Zahariade, G. (2005) Compression Fractale d'Images. Lyon, France: TIPE, ENS.
Thompson, S. (2011) The Craft of Functional Programming, 3rd ed. Boston, MA: Addison-Wesley.
Ullrich, H. (1999) Low Bit-rate Image and Video Coding with Weighted Finite Automata. Berlin, Germany: Mensch & Buch.
Vaddella, V. R. P. & Inampudi, R. B. (2010) Fast fractal compression of satellite and medical images based on domain-range entropy. J. Appl. Comput. Sci. Math. 9 (4), 2126.
Veenadevi, S. V. & Ananth, A. G. (2011) Fractal image compression of satellite imageries. Int. J. Comput. Appl. 30 (3), 3336.
Welstead, S. (1999) Fractal and Wavelet Image Compression Techniques. Bellingham, WA: SPIE Press.
Wertheim, M. (2006) Field Guide to the Business Card Menger Sponge. Los Angeles, CA: The Institute for Figuring.
Type Description Title
UNKNOWN
Supplementary materials

Martin and Curtis Supplementary Material
Supplementary Material

 Unknown (506 KB)
506 KB

Fractal image compression

  • C. E. MARTIN (a1) and S. A. CURTIS (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Fractal image compression

  • C. E. MARTIN (a1) and S. A. CURTIS (a2)
Submit a response

Discussions

No Discussions have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *