Skip to main content Accessibility help

Explicit substitutions

  • M. Abadi (a1), L. Cardelli (a1), P.-L. Curien (a2) and J.-J. Lévy (a3)


The λσ-calculus is a refinement of the λ-calculus where substitutions are manipulated explicitly. The λσ-calculus provides a setting for studying the theory of substitutions, with pleasant mathematical properties. It is also a useful bridge between the classical λ-calculus and concrete implementations.



Hide All
Barendregt, H. P. 1985. The Lambda Calculus: Its Syntax and Semantics. North Holland.
De Bruijn, N. 1972. Lambda-calculus notation with nameless dummies, a tool for automatic formula manipulation. Indag. Mat. 34: 381–92.
Cardelli, L. 1989. Typeful Programming, SRC Report No. 45. Digital Equipment Corporation.
Curien, P.-L. 1986. Categorical Combinators, Sequential Algorithms and Functional Programming. Pitman.
Curien, P.-L. 1988. The λπ-calculi: an Abstract Framework for Closures, unpublished (preliminary version printed as LIENS report).
Curien, P.-L., Hardin, T. and Lévy, J.-J. 1991 a. Confluence properties of weak and strong calculi of explicit substitutions (draft).
Curien, P.-L., Hardin, T. and Ríos, A. 1991 b. Normalisation forte des substitutions (draft).
Curien, P.-L. and Ríos, A. 1991. Un Résultat de Complétude pour les Substitutions Explicites.
Comptes Rendus de l'Académie des Sciences de Paris, t. 312, Série I, pp. 471–76.
Curry, H. P. and Feys, R. 1958. Combinatory Logic, vol. 1. North Holland.
Field, J. 1990. On laziness and optimality in lambda interpreters: tools for specification and analysis. In 17th Annual ACM Symposium on Principles of Programming Languages,San Francisco, USA,january, pp. 115.
Hardin, T. 1989. Confluence results for the pure strong categorical combinatory logic CCL: λ-calculi as subsystems of CCL, Theor. Comput. Sci. 65: 291342.
Hardin, T. and Laville, A. 1986. Proof of termination of rewriting system SUBST on CCL. Theor. Comput. Sci. 46: 305–12.
Hardin, T. and Lévy, J.-J. 1989. A confluent calculus of substitutions. In France–Japan Artificial Intelligence and Computer Science Symposium,Izu, Japan,December.
Huet, G. and Oppen, D. C. 1980. Equations and rewrite rules: a survey. In Book, R. (editor), Formal Languages Theory: Perspectives and Open Problems, pp. 349–93. Academic Press.
Klop, J. W. 1980. Combinatory Reduction Systems. Mathematical Center Tracts 129, Amsterdam.
Martin-Löf, P. 1984. Intuitionistic Type Theory, notes by G. Sambin of a series of lectures given in Padova in 1980. Bibliopolis.
Wadsworth, C. P. 1971. Semantics and Pragmatics of the Lambda Calculus, Dissertation, Oxford University.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

Explicit substitutions

  • M. Abadi (a1), L. Cardelli (a1), P.-L. Curien (a2) and J.-J. Lévy (a3)
Submit a response


No Discussions have been published for this article.


Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *