Skip to main content Accessibility help
×
Home

Canonical typing and ∏-conversion in the Barendregt Cube

  • Fairouz Kamareddine (a1) and Rob Nederpelt (a2)

Abstract

In this article, we extend the Barendregt Cube with ∏-conversion (which is the analogue of β-conversion, on product type level) and study its properties. We use this extension to separate the problem of whether a term is typable from the problem of what is the type of a term.

Copyright

References

Hide All
Barendregt, H. 1992. Lambda calculi with types. In: Handbook of Logic in Computer Science, vol. II, pp. 118414, Abramsky, S., Gabbay, D. M. and Maibaum, T. S. E., editors. Oxford: Oxford University Press.
de Bruijn, N. G. 1974. Some extensions of AUTOMATH: the AUT-4 family. Department of Mathematics, Eindhoven University of Technology.
Church, A. 19321933. A set of postulates for the foundation of logic. Annals of Math. 33, 346366, 34, 839864.
Church, A. 1940. A formulation of the simple theory of types. Journal of Symbolic Logic, 5, 5668.
Frege, G. 1879. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle, Verlag von Louis Nebert. (Reprinted 1964, Hildesheim, Georg Olms Verlagsbuchhaltung.)
Hilbert, D. and Ackermann, W. 1928. Grundzüge der theoretischen Logik. Berlin: Springer Verlag.
Howard, W. A. 1980. The formulae-as-types notion of constructions. In: To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Hindley, J. R. and Seldin, J. P., editors. New York: Academic Press.
Kamareddine, F. and Nederpelt, R. P. 1993. On stepwise explicit substitution. International Journal of Foundations of Computer Science, 4(3), 197240.
Kamareddine, F. and Nederpelt, R. P. 1994 a. Canonical Typing and ∏-Conversion. Research report, Department of Mathematics and Computing Science, Eindhoven University of Technology.
Kamareddine, F. and Nederpelt, R. P. 1994 b. A unified approach to type theory through a refined λ-calculus. Theoretical Computer Science, 136, 183216.
Kamareddine, F. and Nederpelt, R. P. 1996. A useful λ-notation. Theoretical Computer Science, 155.
Kamareddine, F. and Nederpelt, R. P. 1995. Generalizing reduction in λ-calculus. Functional Programming, 5(4), 637651.
Terlouw, J. 1989. Een nadere bewijstheoretische analyse van GSTTs. Technical report, Department of Computer Science, University of Nijmegen.
Whitehead, A. N. and Russell, B. 1960. Principia Mathematica. Cambridge: Cambridge University Press. (Reprinted 1960.)

Related content

Powered by UNSILO

Canonical typing and ∏-conversion in the Barendregt Cube

  • Fairouz Kamareddine (a1) and Rob Nederpelt (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

Canonical typing and ∏-conversion in the Barendregt Cube

  • Fairouz Kamareddine (a1) and Rob Nederpelt (a2)
Submit a response

Discussions

No Discussions have been published for this article.

×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *