Skip to main content Accessibility help
×
Home

A weakly nonlinear evolution model for long internal waves in a large lake

  • TAKAHIRO SAKAI (a1) and L. G. REDEKOPP (a1)

Abstract

A wind-forced weakly nonlinear weakly dispersive evolution model is derived for a continuously stratified circular lake of slowly varying depth under the effect of the Earth's rotation. The model was numerically integrated to investigate the evolution of long internal waves of vertical mode one for various sets of environmental parameters. It is demonstrated that the Kelvin wave steepens as it propagates, and the steepened front subsequently generates a train of oscillatory waves. It is demonstrated that Poincaré waves do not steepen, but their amplitude is modulated in an oscillatory manner with time, exhibiting a pseudo recurrence character. The model was applied to the wind forced problem, confirming that Kelvin and Poincaré waves are the dominant response. Energy partition among Kelvin and Poincaré wave modes is estimated as a function of wind-forcing parameters. For large lakes, the most significant wave amplitude is found in the Kelvin wave mode, but the gross field energy is most significantly contained in Poincaré wave modes.

Copyright

Corresponding author

Email address for correspondence: tsakai@usc.edu

References

Hide All
Antenucci, J. & Imberger, J. 2001 Energetics of long internal gravity waves in large lakes. Limnol. Oceanogr. 46 (7), 17601773.
Antenucci, J., Imberger, J. & Saggio, A. 2000 Seasonal evolution of the basin-scale internal wave field in a large stratified lake. Limnol. Oceanogr. 45 (7), 16211638.
Beletsky, D. & O'Connor, W. P. 1997 Numerical simulation of internal Kelvin waves and coastal upwelling fronts. J. Phys. Oceanogr. 27, 11971215.
Bennett, J. R. 1973 A theory of large-amplitude Kelvin waves. J. Phys. Oceanogr. 3, 5760.
Boegman, L., Ivey, G. N. & Imberger, J. 2005 a The degeneration of internal waves in lakes with sloping topography. Limnol. Oceanogr. 50 (5), 16201637.
Boegman, L., Ivey, G. N. & Imberger, J. 2005 b The energetics of large-scale internal wave degeneration in lakes. J. Fluid Mech. 531, 159180.
Boyd, J. P. 1998 High order models for the nonlinear shallow water wave equations on the equatorial beta-plane with application to Kelvin wave frontogenesis. Dyn. Atmos. Oceans 28, 6991.
Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods, 2nd edn.Dover.
Csanady, G. T. 1967 Large-scale motion in the Great Lakes. J. Geophys. Res. 72 (16), 41514162.
Csanady, G. T. 1968 Wind-driven summer circulation in the Great Lakes. J. Geophys. Res. 73 (7), 25792589.
Csanady, G. T. 1972 Response of large stratified lakes to wind. J. Phys. Oceanogr. 2 (1), 313.
Csanady, G. T. 1975 Hydrodynamics of large lakes. Annu. Rev. Fluid Mech. 7, 357386.
Farmer, D. M. 1978 Observations of long nonlinear internal waves in lake. J. Phys. Oceanogr. 8, 6373.
Fedorov, A. V. & Melville, W. K. 1995 Propagation and breaking of nonlinear Kelvin waves. J. Phys. Oceanogr. 25, 25182531.
Fedorov, A. V. & Melville, W. K. 2000 Kelvin fronts on the equatorial thermocline. J. Phys. Oceanogr. 30, 16921705.
de la Fuente, A., Shimizu, K., Imberger, J. & Niño, Y. 2008 The evolution of internal waves in a rotating, stratified, circular basin and the influence of weakly nonlinear and nonhydrostatic accelarations. Limnol. Oceanogr. 53 (6), 27382748.
Gerkema, T. 2003 Development of internal solitary waves in various thermocline regimes: a multi-modal approach. Nonlinear Process. Geophys. 10, 397405.
Griffiths, S. D. & Grimshaw, R. H. J. 2007 Internal tide generation at the continental shelf modelled using a modal decomposition: two-dimensional results. J. Phys. Oceanogr. 37, 428451.
Grimshaw, R. 1985 Evolution equations for weakly nonlinear, long internal waves in a rotating fluid. Stud. Appl. Math 73, 133.
Helfrich, K. R. 1992 Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech. 243, 133154.
Hodges, B. R., Imberger, J., Saggio, A. & Winters, K. B. 2000 modelling basin-scale internal waves in a stratified lake. Limnol. Oceanogr. 45 (7), 16031620.
Horn, D. A., Imberger, J. & Ivey, G. N. 2001 The degeneration of large-scale interfacial gravity waves in lakes. J. Fluid Mech. 434, 181207.
Horn, D. A., Imberger, J., Ivey, G. N. & Redekopp, L. G. 2002 A weakly nonlinear model of long internal waves in closed basins. J. Fluid Mech. 467, 269287.
Hunkins, K. & Fliegel, M. 1973 Internal undular surges in Seneca Lake: a natural occurrence of solitons. J. Geophys. Res. 78, 539548.
Hüttemann, H. & Hutter, K. 2001 Boroclinic solitary waves in a two-layer fluid system with diffusive interface. Exp. fluids 30, 317326.
Lamb, H. Sir 1932 Hydrodynamics, 6th edn.Dover.
Matsushima, T. & Marcus, P. S. 1995 A spectral method for polar coordinates. J. Comput. Phys. 120, 365374.
Maxworthy, T. 1983 Experiments on solitary internal Kelvin waves. J. Fluid Mech. 129, 365383.
Melville, W. K., Tomasson, G. G. & Renouard, D. P. 1989 On the stability of Kelvin waves. J. Fluid Mech. 206, 123.
Michallet, H. & Ivey, G. N. 1999 Experiments on mixing due to internal solitary waves. J. Geophys. Res. 104 (C6), 1346713477.
Ripa, P. 1982 Nonlinear wave–wave interactions in a one-layer reduced-gravity model on the equatorial β-plane. J. Phys. Oceanogr. 12, 97111.
Rueda, J. R., Schladow, S. G. & Pálmarsson, S. Ó. 2003 Basin-scale internal wave dynamics during a winter cooling period in a large lake. J. Geophys. Res. 108 (C3), 3907.
Sakai, T. & Redekopp, L. G. 2009 a An application of one-sided Jacobi polynomials for spectral modelling of vector fields in polar coordinates. J. Comput. Phys. 228, 70697085.
Sakai, T. & Redekopp, L. G. 2009 b A weakly nonlinear model for multi-modal evolution of wind-generated long internal waves in a closed basin. Nonlinear Process. Geophys. 16, 487502.
Sakai, T. & Redekopp, L. G. 2010 A parametric study of the generation and degeneration of wind-forced, long internal waves in narrow lakes. J. Fluid Mech. 645, 315344.
Schwab, D. J. & Beletsky, D. 2003 Relative effects of wind stress curl, topography, and stratification on large-scale circulation in Lake Michigan. J. Geophys. Res. 108 (C2), 3044.
Shimizu, K. & Imberger, J. 2007 Horizontal structure and excitation of primary motions in a strongly stratified lake. Limnol. Oceanogr. 52 (6), 26412655.
Stashchuk, N., Vlasenko, V. & Hutter, K. 2005 Numerical modelling of disintegration of basin-scale internal waves in a tank filled with stratified water. Nonlinear Process. Geophys. 12, 955964.
Stocker, R. & Imberger, J. 2003 Energy partitioning and horizontal dispersion in a stratified rotating lake. J. Phys. Oceanogr. 33, 512529.
Tomasson, G. G. & Melville, W. K. 1990 Nonlinear and dispersive effects in Kelvin waves. Phys. Fluids A 2 (2), 189193.
Verkley, W. T. M. 1997 A spectral model for two-dimensional incompressible fluid flow in a circular basin. Part I. Mathematical formulation. J. Comput. Phys. 136, 100114.
Vlasenko, V. & Hutter, K. 2001 Generation of second mode solitary waves by the interaction of a first mode soliton with a sill. Nonlinear Process. Geophys. 8, 223239.
Vlasenko, V. & Hutter, K. 2002 Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. Phys. Oceanogr. 32, 17791793.
Wake, G. W., Gula, J. & Ivey, G. N. 2004 Periodic forcing of baroclinic basin-scale waves in a rotating stratified basin. In Proceedings of 15th Australasian Fluid Mechanics Conference, The University of Sydney, Sydney, Australia.
Wake, G. W., Ivey, G. N. & Imberger, J. 2005 The temporal evolution of baroclinic basin-scale waves in a rotating circular basin. J. Fluid Mech. 523, 367392.
Wang, Y. & Hutter, K. 1998 A semi-implicit semispectral primitive equation model for lake circulation dynamics and its stability performance. J. Comput. Phys. 139, 209241.
Zabusky, N. J. & Kruskal, M. D. 1965 Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240243.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

A weakly nonlinear evolution model for long internal waves in a large lake

  • TAKAHIRO SAKAI (a1) and L. G. REDEKOPP (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.