Skip to main content Accessibility help

Wavy liquid films in interaction with a confined laminar gas flow

  • Georg F. Dietze (a1) and Christian Ruyer-Quil (a1)


A low-dimensional model capturing the fully coupled dynamics of a wavy liquid film in interaction with a strongly confined laminar gas flow is introduced. It is based on the weighted residual integral boundary layer approach of Ruyer-Quil & Manneville (Eur. Phys. J. B, vol. 15, 2000, pp. 357–369) and accounts for viscous diffusion up to second order in the film parameter. The model is applied to study two scenarios: a horizontal pressure-driven water film/air flow and a gravity-driven liquid film interacting with a co- or counter-current air flow. In the horizontal case, interfacial viscous drag is weak and interfacial waves are primarily driven by pressure variations induced by the velocity difference between the two layers. This produces an extremely thin interfacial shear layer which is pinched at the main and capillary wave humps, creating several elongated vortices in the wave-fixed reference frame. In the capillary wave region preceding a large wave hump, flow separation occurs in the liquid in the form of a vortex transcending the liquid–gas interface. For the gravity-driven film, a twin vortex (in the wave-fixed reference frame) linked to the occurrence of rolling waves has been identified. It consists of the known liquid-side vortex within the wave hump and a previously unknown counter-rotating gas-side vortex, which are connected by the same interfacial stagnation points. At large counter-current gas velocities, interfacial waves on the falling liquid film are amplified and cause flooding of the channel in a noise-driven scenario, while this can be delayed by forcing regular waves at the most amplified linear wave frequency. Our model is shown to exactly capture the long-wave linear stability threshold for the general case of two-phase channel flow. Further, for the two considered scenarios, it predicts growth rates and celerity of linear waves in convincing agreement with Orr–Sommerfeld calculations. Finally, model calculations of nonlinear interfacial waves are in good agreement with film thickness and velocity measurements as well as streamline patterns in both phases obtained from direct numerical simulations.


Corresponding author

Email address for correspondence:


Hide All
Alba, K., Laure, P. & Khayat, R. E. 2011 Transient two-layer thin-film flow inside a channel. Phys. Rev. E 84 (2), 114.
Alekseenko, S. V., Aktershev, S. P., Cherdantsev, A. V., Kharlamov, S. M. & Markovich, D. M. 2009 Primary instabilities of liquid film flow sheared by turbulent gas stream. Intl J. Multiphase Flow 35, 617627.
Alekseenko, S. V. & Nakoryakov, V. E. 1995 Instability of a liquid film moving under the effect of gravity and gas flow. Intl J. Heat Mass Transfer 38 (11), 21272134.
Alekseenko, S. V., Nakoryakov, V. E. & Pokusaev, B. G. 1994 Wave Flow of Liquid Films. Begell House.
Amaouche, M., Mehidi, N. & Amatousse, N. 2007 Linear stability of a two-layer film flow down an inclined channel: a second-order weighted residual approach. Phys. Fluids 19, 084106.
Azzopardi, B. J. 1997 Drops in annular two-phase flow. Intl J. Multiphase Flow 23 (Suppl.), 153.
Barthelet, P., Charru, F. & Fabre, J. 1995 Experimental study of interfacial long waves in a two-layer shear flow. J. Fluid Mech. 303, 2353.
Benney, D. J. 1966 Long waves on liquid films. J. Math. Phys. 45, 150155.
Bontozoglou, V. 1998 A numerical study of interfacial transport to a gas-sheared wavy liquid. Intl J. Heat Mass Transfer 41 (15), 22972305.
Boomkamp, P. A. M. & Miesen, R. H. M. 1996 Classification of instabilities in parallel two-phase flow. Intl J. Multiphase Flow 22, 6788.
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modelling surface tension. J. Comput. Phys. 100, 335354.
Brauner, N., Moalem Maron, D. & Tovey, I. 1987 Characterization of the interfacial velocity in wavy thin films flow. Intl Commun. Heat Mass Transfer 14, 293302.
Brooke Benjamin, T. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554574.
Brooke Benjamin, T. 1959 Shearing flow over a wavy boundary. J. Fluid Mech. 6, 161205.
Chang, H.-C. 1986 Nonlinear waves on liquid film surfaces. Flooding in a vertical tube. Chem. Engng Sci. 41 (10), 24632476.
Chang, H. C. & Demekhin, E. A. 2002 Complex Wave Dynamics on Thin Films Studies in Interface Science, vol. 14. Elsevier.
Chang, H. C., Demekhin, E. A. & Kalaidin, E. 1996a Simulation of noise-driven wave dynamics on a falling film. AIChE J. 42 (6), 15531568.
Chang, H. C., Demekhin, E. A., Kalaidin, E. & Ye, Y. 1996b Coarsening dynamics of falling-film solitary waves. Phys. Rev. E 54 (2), 14671477.
Charru, F. & Hinch, E. J. 2000 Phase diagram of interfacial instabilities in a two-layer couette flow and mechanism of the long-wave instability. J. Fluid Mech. 414, 195223.
Demekhin, E. A. 1981 Nonlinear waves in a liquid film entrained by a turbulent gas stream. Fluid Dyn. 16, 188193.
Dietze, G. F., Al-Sibai, F. & Kneer, R. 2009 Experimental study of flow separation in laminar falling liquid films. J. Fluid Mech. 637, 73104.
Dietze, G. F., Leefken, A. & Kneer, R. 2008 Investigation of the backflow phenomenon in falling liquid films. J. Fluid Mech. 595, 435459.
Doedel, E. J. 2008 AUTO07p: continuation and bifurcation software for ordinary differential equations. Montreal Concordia University.
Drosos, E. I. P., Paras, S. V. & Karabelas, A. J. 2006 Counter-current gas–liquid flow in a vertical narrow channel – liquid film characteristics and flooding phenomena. Intl J. Multiphase Flow 32, 5181.
Dukler, A. E. 1976 The role of waves in two phase flow: some new understandings. Chem. Engng Edu. 11 (3), 108117.
Floryan, J. M., Davis, S. H. & Kelly, R. E. 1987 Instabilities of a liquid film flowing down a slightly inclined plane. Phys. Fluids 30 (4), 983989.
Frank, A. M. 2008 Numerical simulation of gas driven waves in a liquid film. Phys. Fluids 20, 122102.
Frisk, D. P. & Davis, E. J. 1972 The enhancement of heat transfer by waves in stratified gas–liquid flow. Intl J. Heat Mass Transfer 15, 15371552.
Guguchkin, V. V., Demekhin, E. A., Kalugin, G. N., Markovich, E. E. & Pikin, V. G. 1979 Linear and nonlinear stability of combined plane-parallel flow of a film of liquid and gas. Fluid Dyn. 1, 3642.
Hanratty, T. J. & Hershman, A. 1961 Initiation of roll waves. AIChE J. 7 (3), 488497.
Haroun, Y., Legendre, D. & Raynal, L. 2010 Direct numerical simulation of reactive absorption in gas–liquid flow on structured packing using interface capturing method. Chem. Engng Sci. 65, 351356.
Hinch, E. J. 1984 A note on the mechanism of the instability at the interface between two shearing fluids. J. Fluid Mech. 144, 463465.
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201225.
Hooper, A. P. 1985 Long-wave instability at the interface between two viscous fluids: thin layer effects. Phys. Fluids 28 (6), 16131618.
Hooper, A. P. & Boyd, W. G. C. 1983 Shear-flow instability at the interface between two viscous fluids. J. Fluid Mech. 128, 507528.
Jurman, L. A., Bruno, K. & McCready, J. 1989 Periodic and solitary waves on thin, horizontal, gas-sheared liquid films. Intl J. Multiphase Flow 15 (3), 371384.
Jurman, L. A. & McCready, M. J. 1989 Study of waves on thin liquid films sheared by turbulent gas flows. Phys. Fluids A 1 (3), 522536.
Kabov, O. A., Zaitsev, D. V., Cheverda, V. V. & Bar-Cohen, A. 2011 Evaporation and flow dynamics of thin, shear-driven liquid films in microgap channels. Exp. Therm. Fluid Sci. 35, 825831.
Kalliadasis, S., Ruyer-Quil, C., Scheid, B. & Velarde, M. G. 2012 Falling Liquid Films, Applied Mathematical Sciences, vol. 176. Springer.
Kapitza, P. L. 1948 Wave flow of thin layer of viscous fluid (in Russian). Zh. Eksp. Teor. Fiz. 18 (1), 328.
Lin, S. P. 1974 Finite amplitude side-band stability of a viscous film. J. Fluid Mech. 63, 417429.
Malamataris, N. A. & Balakotaiah, V. 2008 Flow structure underneath the large amplitude waves of a vertically falling film. AIChE J. 54 (7), 17251740.
Malamataris, N. A., Vlachogiannis, M. & Bontozoglou, V. 2002 Solitary waves on inclined films: flow structure and binary interactions. Phys. Fluids 14 (3), 10821094.
Matar, O. K., Lawrence, C. J. & Sisoev, G. M. 2007 Interfacial dynamics in pressure-driven two-layer laminar channel flow with high viscosity ratios. Phys. Rev. E 75, 056314.
McCready, M. J. & Chang, H.-C. 1994 Formation of large disturbances on sheared and falling liquid films. Chem. Engng Commun. 141–142 (1), 347358.
Miesen, R. & Boersma, B. J. 1995 Hydrodynamic stability of a sheared liquid film. J. Fluid Mech. 301, 175202.
Miles, J. W. 1957 On the generation of surface waves by shear flows. J. Fluid Mech. 3, 185204.
Miyara, A. 1999 Numerical analysis on flow dynamics and heat transfer of falling liquid films with interfacial waves. Heat Mass Transfer 35, 298306.
Náraigh, L. Ó., Spelt, P. D. M., Matar, O. K. & Zaki, T. A. 2011 Interfacial instability in turbulent flow over a liquid film in a channel. Intl J. Multiphase Flow 37, 812830.
Nave, J.-C. 2004 Direct numerical simulation of liquid films. PhD thesis, University of California.
Njifenju, K. 2010 Gouttes et films liquides en aérodynamique automobile. PhD thesis, Université Pierre et Marie Curie.
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 58385866.
Pozrikidis, C. 1998 Gravity-driven creeping flow of two adjacent layers through a channel and down a plane wall. J. Fluid Mech. 371, 345376.
Prosperetti, A. & Tryggvason, G. (Eds) 2007 Computational Methods for Multiphase Flow. Cambridge University Press.
Rastaturin, A., Demekhin, E. & Kalaidin, E. 2006 Optimal regimes of heat-mass transfer in a falling film. J. Non-Equilib. Thermodyn. 31, 110.
Renardy, Y. 1985 Instability at the interface between two shearing fluids in a channel. Phys. Fluids 28 (12), 34413443.
Roberts, R. M. & Chang, H.-C. 2000 Wave-enhanced interfacial transfer. Chem. Engng Sci. 55, 11271141.
Rusche, H. 2002 Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD thesis, Imperial College, University of London.
Ruyer-Quil, C. & Manneville, P. 1998 Modeling film flows down inclined planes. Eur. Phys. J. B 6 (2), 277292.
Ruyer-Quil, C. & Manneville, P. 2000 Improved modeling of flows down inclined planes. Eur. Phys. J. B 15 (2), 357369.
Ruyer-Quil, C. & Manneville, P. 2002 Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Phys. Fluids 14 (1), 170183.
Sahu, K. C., Valluri, P., Spelt, P. D. M. & Matar, O. K. 2007 Linear instability of pressure-driven channel flow of a Newtonian and a Herschel–Bulkley fluid. Phys. Fluids 19, 122101.
Sahu, K. C., Valluri, P., Spelt, P. D. M. & Matar, O. K. 2008 Erratum: linear instability of pressure-driven channel flow of a Newtonian and a Herschel–Bulkley fluid [Phys. Fluids 19, 122101 (2007)]. Phys. Fluids 20, 109902.
Samanta, A., Ruyer-Quil, C. & Goyeau, B. 2011 A falling film down a slippery inclined plane. J. Fluid Mech. 684, 353383.
Samanta, A., Ruyer-Quil, C. & Goyeau, B. 2013 A falling film on a porous medium. J. Fluid Mech. 716, 414444.
Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567603.
Scheid, B., Ruyer-Quil, C. & Manneville, P. 2006 Wave patterns in film flows: modeling and three-dimensional waves. J. Fluid Mech. 562, 183222.
Shearer, C. J. & Davidson, J. F. 1965 The investigation of a standing wave due to gas blowing upwards over a liquid film; its relation to flooding in wetted-wall columns. J. Fluid Mech. 22 (02), 321335.
Shkadov, V. Ya. 1967 Wave flow regimes of a thin layer of viscous fluid subject to gravity. Fluid Dyn. 2 (1), 2934.
Sisoev, G. M., Matar, O. K. & Lawrence, C. J. 2009 Wave regimes in two-layer microchannel flow. Chem. Engng Sci. 64, 30943102.
Thorsness, C. B., Morrisroe, P. E. & Hanratty, T. J. 1978 A comparison of linear theory with measurements of the variation of shear stress along a solid wave. Chem. Engng Sci. 33, 579592.
Tilley, B. S., Davis, S. H. & Bankoff, S. G. 1994a Linear stability theory of two-layer fluid flow in an inclined channel. Phys. Fluids 6 (12), 39063922.
Tilley, B. S., Davis, S. H. & Bankoff, S. G. 1994b Nonlinear long-wave stability of superposed fluids in an inclined channel. J. Fluid Mech. 277, 5583.
Trifonov, Y. Y. 2010 Counter-current gas–liquid wavy film flow between the vertical plates analyzed using the Navier–Stokes equations. AIChE J. 56 (8), 19751987.
Tseluiko, D. & Kalliadasis, S. 2011 Nonlinear waves in counter-current gas–liquid film flow. J. Fluid Mech. 673, 1959.
Valluri, P., Matar, O. K., Hewitt, G. F. & Mendes, M. A. 2005 Thin film flow over structured packings at moderate Reynolds numbers. Chem. Engng Sci. 60, 19651975.
Valluri, P., Náraigh, L. Ó., Ding, H. & Spelt, P. D. M. 2010 Linear and nonlinear spatio-temporal instability in laminar two-layer flows. J. Fluid Mech. 656, 458480.
Vlachomitrou, M. & Pelekasis, N. 2009 Nonlinear ingteraction between a boundary layer and a liquid film. J. Fluid Mech. 638, 199242.
Vlachomitrou, M. & Pelekasis, N. 2010 Short- to long-wave resonance and soliton formation in boundary-layer interaction with a liquid film. J. Fluid Mech. 660, 162196.
Vlachos, N. A., Paras, S. V., Mouza, A. A. & Karabelas, A. J. 2001 Visual observations of flooding in narrow rectangular channels. Intl J. Multiphase Flow 27, 14151430.
Yiantsios, S. G. 2006 Plane Poiseuille flow of a sedimenting suspension of Brownian hard-sphere particles: hydrodynamic stability and direct numerical simulations. Phys. Fluids 18, 054103.
Yiantsios, S. G. & Higgins, B. G. 1988a Linear stability of plane poiseuille flow of two superposed fluids. Phys. Fluids 31 (11), 32253238.
Yiantsios, S. G. & Higgins, B. G. 1988b Numerical solution of eigenvalue problems using the compound matrix method. J. Comput. Phys. 74, 2540.
Yih, C.-S. 1967 Instability due to viscosity stratification. J. Fluid Mech. 27 (2), 337352.
Zakaria, K. 2012 Long interfacial waves inside an inclined permeable channel. Intl J. Non-Linear Mech. 47, 4248.
Zapke, A. & Kröger, D. G. 2000 Countercurrent gas–liquid flow in inclined and vertical ducts – II: the validity of the froude-ohnesorge number correlation for flooding. Intl J. Multiphase Flow 26, 14571468.
Zhang, J., Miksis, M. J., Bankoff, S. G. & Tryggvason, G. 2002 Nonlinear dynamics of an interface in an inclined channel. Phys. Fluids 14 (6), 18771885.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed