Skip to main content Accessibility help

Wakes behind a prolate spheroid in crossflow

  • George K. El Khoury (a1), Helge I. Andersson (a2) and Bjørnar Pettersen (a1)


Viscous laminar flow past a prolate spheroid has been investigated numerically at seven different Reynolds numbers; and . In contrast to all earlier investigations, the major axis of the spheroid was oriented perpendicular to the free stream flow. As expected, the flow field in the wake showed a strong resemblance of that observed behind a finite-length circular cylinder, yet had features observed in the axisymmetric wake behind a sphere. The following different flow regimes were observed in the present computational study: (i) steady laminar flow with massive flow separation and symmetry about the equatorial and the meridional planes at ; (ii) steady laminar flow with massive flow separation and symmetry about the equatorial and the meridional plane at , but the flow in the equatorial plane did no longer resemble the steady wake behind a circular cylinder; (iii) unsteady laminar flow with Strouhal number and symmetry about the equatorial plane at ; (iv) unsteady laminar flow with two distinct frequencies and without any planar symmetries at ; (v) transitional flow with a dominant shedding frequency and without any spatial symmetries at . For all but the two lowest hairpin vortices were alternately shed from the two sides of the spheroid and resulted in a ladder-like pattern of oppositely oriented vortex structures, in contrast with the single-sided shedding in the wake of a sphere. The contour of the very-near-wake mimicked the shape of the prolate spheroid. However, downstream the major axis of the wake became aligned with the minor axis of the spheroid. This implies that an axis switching occurred some downstream, i.e. the cross-section of the wake evolved such that the major and minor axes interchanged at a certain downstream location. This peculiar phenomenon has frequently been reported to arise for elliptical and rectangular jets, whereas observations of axis switching for asymmetric wakes are scarce.


Corresponding author

Email address for correspondence:


Hide All
1. Achenbach, E. 1974 Vortex shedding from spheres. J. Fluid Mech. 62, 209221.
2. Andersson, H. I., Zhao, L. & Barri, M. 2012 Torque-coupling and particle-turbulence interactions. J. Fluid Mech. 696, 319329.
3. Breach, D. R. 1961 Slow flow past ellipsoids of revolution. J. Fluid Mech. 10, 306314.
4. Brücker, C. 2001 Spatio-temporal reconstruction of vortex dynamics in axisymmetric wakes. J. Fluids Struct. 15, 543554.
5. Chesnakas, C. J. & Simpson, R. L. 1994 Full three-dimensional measurements of the cross-flow separation region of a prolate spheroid. Exp. Fluids 17, 6874.
6. Chesnakas, C. J. & Simpson, R. L. 1996 Measurements of the turbulence structure in the vicinity of a three-dimensional separation. Trans. ASME: J. Fluids Engng 118, 268275.
7. Chesnakas, C. J. & Simpson, R. L. 1997 Detailed investigation of the three-dimensional separation about a prolate spheroid. AIAA J. 35, 990999.
8. Constantinescu, G. S., Pasinato, H., Wang, Y.-Q., Forsythe, J. R. & Squires, K. D. 2002 Numerical investigation of flow past a prolate spheroid. Trans. ASME: J. Fluids Engng 124, 904910.
9. El Khoury, G. K., Andersson, H. I. & Pettersen, B. 2010 Crossflow past a prolate spheroid at Reynolds number of 10 000. J. Fluid Mech. 659, 365374.
10. Fu, T. C., Shekarriz, A., Katz, J. & Huang, T. T. 1994 The flow structure in the lee of an inclined prolate spheroid. J. Fluid Mech. 269, 79106.
11. Goody, M. C., Simpson, R. L., Engel, M., Chesnakas, C. J. & Devenport, W. J. 1998 Mean velocity and pressure and velocity spectral measurements within a separated flow around a prolate spheroid at incidence. In 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. AIAA Paper 98-0630–10. American Institute of Aeronautics and Astronautics.
12. Goody, M. C., Simpson, R. L. & Chesnakas, C. J. 2000 Separated flow surface pressure fluctuations and pressure–velocity correlations on prolate spheroid. AIAA J. 38, 266274.
13. Han, T. & Patel, V. C. 1979 Flow separation on a spheroid at incidence. J. Fluid Mech. 92, 643657.
14. Hussain, F. & Husain, H. S. 1989 Elliptic jets. Part 1. Characteristics of unexcited and exited jets. J. Fluid Mech. 208, 257320.
15. Hölzer, A. & Sommerfeld, M. 2009 Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput. Fluids 38, 572589.
16. Inoue, O. & Sakuragi, A. 2008 Vortex shedding from a circular cylinder of finite length at low Reynolds numbers. Phys. Fluids 20, 033601.
17. Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A. 102, 161179.
18. Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
19. Johnson, T. A. & Patel, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.
20. Karlsson, A., Bensow, R. & Fureby, C. 2008 Numerical simulations of the flow around a prolate spheroid. In 11th Numerical Towing Tank Symposium, ENSIETA, Brest, France.
21. Kim, S. & Arunachalam, P. V. 1987 The general solution for an ellipsoid in low-Reynolds-number flow. J. Fluid Mech. 178, 535547.
22. Kim, S.-E., Rhee, S. H. & Cokljat, D. 2002 High-incidence and dynamic pitch-up maneuvering characteristics of a prolate spheroid - CFD Validation. In 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan. National Academic Press.
23. Kim, S.-E., Rhee, S. H. & Cokljat, D. 2003 Application of modern turbulence models to vortical flow around a prolate spheroid at incidence. In 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA. AIAA Paper 2003-0429–11.
24. Kiya, M. & Abe, Y. 1999 Turbulent elliptic wakes. J. Fluids Struct. 13, 10411067.
25. Krothapalli, A., Baganoff, D. & Karamcheti, K. 1981 On the mixing of rectangular jets. J. Fluid Mech. 107, 201220.
26. Kuo, Y. H. & Baldwin, L. V. 1967 The formation of elliptical wakes. J. Fluid Mech. 27, 353360.
27. Lundell, F. & Carlsson, A. 2010 Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape. Phys. Rev. E 81, 016323–08.
28. Manhart, M. 2004 A zonal algorithm for DNS of turbulent boundary layers. Comput. Fluids 33, 435461.
29. Meier, H. U. & Kreplin, H.-P. 1980 Experimental investigation of the boundary layer transition and separation on a body of revolution. Z. Flugwiss. Weltraumforsch. 4, 6571.
30. Mortensen, P. H., Andersson, H. I., Gillissen, J. J. J. & Boersma, B. J. 2008 Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302.
31. Narasimhamurthy, V. D. & Andersson, H. I. 2009 Numerical simulation of the turbulent wake behind a normal flat plate. Intl J. Heat Fluid Flow 30, 10371043.
32. Narasimhamurthy, V. D., Andersson, H. I. & Pettersen, B. 2009a Cellular vortex shedding behind a tapered circular cylinder. Phys. Fluids 21, 044106.
33. Narasimhamurthy, V. D., Andersson, H. I. & Pettersen, B. 2009b Steady viscous flow past a tapered cylinder. Acta Mechanica 206, 5357.
34. Peller, N., Le Duc, A., Tremblay, F. & Manhart, M. 2006 High-order stable interpolations for immersed boundary methods. Intl J. Numer. Meth. Fluids 52, 11751193.
35. Provansal, M., Schouveiler, L. & Leweke, T. 2004 From the double vortex street behind a cylinder to the wake of a sphere. Eur. J. Mech. B/Fluids 23, 6580.
36. Rhee, S. H. & Hino, T. 2000 Computational investigation of 3D turbulent flow separation around a spheroid using an unstructured grid method. J. Soc. Nav. Archit. Japan 188, 19.
37. Saha, A. K. 2004 Three-dimensional numerical simulations of the transition of flow past a cube. Phys. Fluids 16, 16301646.
38. Sakamoto, H. & Haniu, H. 1990 A study on vortex shedding from spheres in a uniform flow. Trans. ASME: J. Fluids Engng 112, 386392.
39. Schouveiler, L. & Provansal, M. 2001 Periodic wakes of low aspect ratio cylinders with free hemispherical ends. J. Fluids Struct. 15, 565573.
40. Sforza, P. M., Steiger, M. H. & Trentacoste, N. 1966 Studies on three-dimensional viscous jets. AIAA J. 4, 800806.
41. Sheard, G. J., Thompson, M. C. & Hourigan, K. 2004 Flow past a cylinder with free hemispherical ends: comments on grid independence and wake symmetry characteristics. In Proceedings of the 15th Australian Fluid Mechanics Conference. University of Sydney, Australia.
42. Sheard, G. J., Thompson, M. C. & Hourigan, K. 2008 Flow normal to a short cylinder with hemispherical ends. Phys. Fluids 20, 041701.
43. Shenoy, A. R. & Kleinstreuer, C. 2008 Flow over a thin circular disk at low to moderate Reynolds numbers. J. Fluid Mech. 605, 253262.
44. Stone, H. L. 1968 Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal. 5, 530558.
45. Sucker, D. & Brauer, H. 1975 Fluiddynamik bei quer angeströmten Zylindern. Wärme-Stoffübertrag 8, 149158.
46. Tomboulides, A. G. & Orszag, S. A. 2000 Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416, 4573.
47. Wetzel, T. G. & Simpson, R. L. 1996 Unsteady three-dimensional cross-flow separation measurements on a prolate spheroid undergoing time-dependent maneuvers. In 21st Symposium on Naval Hydrodynamics. Trondheim, Norway. National Academic Press.
48. Wetzel, T. G. & Simpson, R. L. 1998 Unsteady crossflow separation location measurements on a maneuvering prolate spheroid. AIAA J. 36, 20632071.
49. Wetzel, T. G., Simpson, R. L. & Chesnakas, C. J. 1998 Measurement of three-dimensional crossflow separation. AIAA J. 36, 557564.
50. Wikström, N., Svennberg, U., Alin, N. & Fureby, C. 2004 Large eddy simulation of the flow around an inclined prolate spheroid. J. Turbul. 5, 29.
51. Williamson, C. H. K. 1996 Three-dimensional wake transition. J. Fluid Mech. 328, 345407.
52. Zaman, K. B. M. Q. 1996 Axis switching and spreading of an asymmetric jet: the role of coherent structure dynamics. J. Fluid Mech. 316, 127.
53. Zamyshlyaev, A. A. & Shrager, G. R. 2004 Fluid flow past spheroids at moderate Reynolds numbers. Fluid Dyn. 39, 376383.
54. Zastawny, M., Mallouppas, G., Zhao, F. & Van Wachem, B. 2012 Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Intl J. Multiphase Flow 39, 227239.
55. Zdravkovich, M. M., Brand, V. P., Mathew, G. & Weston, A. 1989 Flow past short circular cylinders with two free ends. J. Fluid Mech. 203, 557575.
56. Zdravkovich, M. M. 1997 Flow Around Circular Cylinders. Oxford University Press.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed