Skip to main content Accessibility help

Wake structure and thrust generation of a flapping foil in two-dimensional flow

  • A. Andersen (a1), T. Bohr (a1), T. Schnipper (a1) (a2) and J. H. Walther (a2) (a3)


We present a combined numerical (particle vortex method) and experimental (soap film tunnel) study of a symmetric foil undergoing prescribed oscillations in a two-dimensional free stream. We explore pure pitching and pure heaving, and contrast these two generic types of kinematics. We compare measurements and simulations when the foil is forced with pitching oscillations, and we find a close correspondence between flow visualisations using thickness variations in the soap film and the numerically determined vortex structures. Numerically, we determine wake maps spanned by oscillation frequency and amplitude, and we find qualitatively similar maps for pitching and heaving. We determine the drag–thrust transition for both pitching and heaving numerically, and we discuss it in relation to changes in wake structure. For heaving with low oscillation frequency and high amplitude, we find that the drag–thrust transition occurs in a parameter region with wakes in which two vortex pairs are formed per oscillation period, in contrast to the common transition scenario in regions with inverted von Kármán wakes.


Corresponding author

Email address for correspondence:


Hide All

Present address: Svend Ole Hansen ApS, Sct. Jørgens Allé 5 C, DK-1615 Copenhagen, Denmark.



Hide All
Bohl, D. G. & Koochesfahani, M. M. 2009 MTV measurements of the vortical field in the wake of an airfoil oscillating at high reduced frequency. J. Fluid Mech. 620, 6388.
Buchholz, J. H. J. & Smits, A. J. 2008 The wake structure and thrust performance of a rigid low-aspect-rato pitching panel. J. Fluid Mech. 603, 331365.
Carrier, J., Greengard, L. & Rokhlin, V. 1988 A fast adaptive multipole algorithm for particle simulations. SIAM J. Sci. Stat. Comput. 9 (4), 669686.
Chomaz, J.-M. & Cathalau, B. 1990 Soap films as two-dimensional classical fluids. Phys. Rev. A 41, 22432245.
Chorin, A. J. 1973 Numerical study of slightly viscous flow. J. Fluid Mech. 57 (4), 785796.
Couder, Y. & Basdevant, C. 1986 Experimental and numerical study of vortex couples in two-dimensional flows. J. Fluid Mech. 173, 225251.
Couder, Y., Chomaz, J. M. & Rabaud, M. 1989 On the hydrodynamics of soap films. Physica D 37, 384405.
Das, A., Shukla, R. K. & Govardhan, R. N. 2016 Existence of a sharp transition in the peak propulsive efficiency of a low-Re pitching foil. J. Fluid Mech. 800, 307326.
Drucker, E. G. & Lauder, G. V. 2002 Experimental hydrodynamics of fish locomotion: functional insights from wake visualization. Intl Comput. Biol. 42, 243257.
Gharib, M. & Derango, P. 1989 A liquid film (soap film) tunnel to study two-dimensional laminar and turbulent shear flows. Physica D 37, 406416.
Godoy-Diana, R., Aider, J.-L. & Wesfreid, J. E. 2008 Transitions in the wake of a flapping foil. Phys. Rev. E 77, 016308.
Hejlesen, M. M., Koumoutsakos, P., Leonard, A. & Walther, J. H. 2015 Iterative Brinkman penalization for remeshed vortex methods. J. Comput. Phys. 280, 547562.
Jaworski, J. W. & Gordnier, R. 2015 Thrust augmentation of flapping airfoils in low Reynolds number flow using a flexible membrane. J. Fluids Struct. 52, 199209.
von Kármán, T. & Burgers, J. M. 1935 General aerodynamic theory – perfect fluids. In Aerodynamic Theory II (ed. Durand, W. F.). Dover.
Koochesfahani, M. M. 1986 Wake of an oscillating airfoil. Phys. Fluids 29, 2776.
Koochesfahani, M. M. 1989 Vortical patterns in the wake of an oscillating airfoil. AIAA J. 27, 12001205.
Larsen, A. & Walther, J. H. 1997 Aeroelastic analysis of bridge girder sections based on discrete vortex simulations. J. Wind Engng Ind. Aerodyn. 67–68, 253265.
Lighthill, M. J. 1969 Hydromechanics of aquatic animal propulsion. Annu. Rev. Fluid Mech. 1, 413446.
Mackowski, A. W. & Williamson, C. H. K. 2015 Direct measurement of thrust and efficiency of an airfoil undergoing pure pitching. J. Fluid Mech. 765, 524543.
Marais, C., Thiria, B., Wesfreid, J. E. & Godoy-Diana, R. 2012 Stabilizing effect of flexibility in the wake of a flapping foil. J. Fluid Mech. 710, 659669.
Rasmussen, J. T., Hejlesen, M. M., Larsen, A. & Walther, J. H. 2010 Discrete vortex method simulations of the aerodynamic admittance in bridge aerodynamics. J. Wind Engng Ind. Aerodyn. 98, 754766.
Rivera, M., Vorobieff, P. & Ecke, R. E. 1998 Turbulence in flowing soap films: velocity, vorticity, and thickness fields. Phys. Rev. Lett. 81 (7), 14171420.
Rutgers, M. A., Wu, X. L. & Daniel, W. B. 2001 Conducting fluid dynamics experiments with vertically falling soap films. Rev. Sci. Instrum. 72, 30253037.
Schnipper, T., Andersen, A. & Bohr, T. 2009 Vortex wakes of a flapping foil. J. Fluid Mech. 644, 411423.
Schnipper, T., Tophøj, L., Andersen, A. & Bohr, T. 2010 Japanese fan flow. Phys. Fluids 22, 091102.
Sfakiotakis, M., Lane, D. M. & Davies, J. B. C. 1999 Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Engng 24, 237252.
Triantafyllou, M. S., Triantafyllou, G. S. & Gopalkrishnan, R. 1991 Wake mechanics for thrust generation in oscillating foils. Phys. Fluids A 3, 28352837.
Triantafyllou, M. S., Triantafyllou, G. S. & Yue, D. K. P. 2000 Hydrodynamics of fishlike swimming. Annu. Rev. Fluid Mech. 32, 3353.
Tytell, E. D. & Lauder, G. V. 2004 The hydrodynamics of eel swimming I. Wake structure. J. Expl Biol. 207 (11), 18251841.
Walther, J. H. & Larsen, A. 1997 Discrete vortex method for application to bluff body aerodynamics. J. Wind Engng Ind. Aerodyn. 67–68, 183193.
Williamson, C. H. K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2, 335381.
Wu, J. C. 1981 Theory for aerodynamic force and moment in viscous flows. AIAA J. 19, 432441.
Zhang, J., Childress, S., Libchaber, A. & Shelley, M. 2000 Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408, 835839.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title

Andersen et al. supplementary movie
Pitching foil with StD = 0.08 and AD = 1.14.

 Video (21.2 MB)
21.2 MB

Andersen et al. supplementary movie
Heaving foil with StD= 0.10 and AD = 1.80.

 Video (27.6 MB)
27.6 MB

Wake structure and thrust generation of a flapping foil in two-dimensional flow

  • A. Andersen (a1), T. Bohr (a1), T. Schnipper (a1) (a2) and J. H. Walther (a2) (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed