Skip to main content Accessibility help

Vortex–wave interaction arrays: a sustaining mechanism for the log layer?

  • Philip Hall (a1)


Vortex–wave interaction theory is used to describe new kinds of localised and distributed exact coherent structures. Starting with a localised vortex–wave interaction state driven by a single inviscid wave, regular arrays of interacting vortex–wave states are investigated. In the first instance the arrays described are operational in an infinite uniform shear flow; we refer to them as ‘uniform shear vortex–wave arrays’. The basic form of the interaction remains identical to the canonical one found by Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666) and subsequently used to describe exact coherent structures by Hall & Sherwin (J. Fluid Mech., vol. 661, 2010, pp. 178–205). Thus in each cell of a vortex–wave array a roll stress jump is induced across the critical layer of an inviscid wave riding on the streak part of the flow. The theory is extended to arbitrary shear flows using a nonlinear Wentzel–Kramers–Brillouin–Jeffreys or ray theory approach with the wave–roll–streak field operating on a shorter length scale than the mean flow. The evolution equation governing the slow dynamics of the interaction turns out to be a modified form of the well-known mean equation for a turbulent flow, and its particular form can be interpreted as a ‘closure’ between the small and large scales of the flow. If the array structure is taken to be universal, in the sense that it applies to arbitrary shear flows, then the array takes on a form which supports a logarithmic mean velocity profile trapped between what can be identified with the ‘wake region’ and a ‘buffer layer’ well known in the context of wall-bounded turbulent flows. The many similarities between the distributed structures described and wall-bounded turbulence suggest that vortex–wave arrays might be involved in the self-sustaining process supporting the log layer. The modification of the mean profile within each cell of the array leads to ‘staircase’-like streamwise velocity profiles similar to those observed experimentally in turbulent flows. The wave field supporting the ‘staircase’ is concentrated in critical layers which can be associated with the shear layer structures that have been attributed by experimentalists to be the mechanism supporting the uniform-momentum zones of the staircase.


Corresponding author

Email address for correspondence:


Hide All
Benney, D. J. & Bergeron, R. F. 1966 A new class of nonlinear waves in parallel flows. Stud. Appl. Maths 48, 181204.
Blackburn, H. M., Hall, P. & Sherwin, S. J. 2013 Lower branch equilibria in Couette flow: the emergence of canonical states for arbitrary shear flows. J. Fluid Mech. 721, 5885.
Brand, E. & Gibson, J. F. 2014 Spanwise-localized solutions of planar shear flows. J. Fluid Mech. 745, 2561.
Chernyshenko, S. I. & Big, M. F. 2005 The mechanism of streak formation in near-wall turbulence. J. Fluid Mech. 721, 5885.
Chini, G. P., Montemuro, B., White, C. M. & Klewicki, J. 2017 A self-sustaining process model of inertial layer dynamics in high Reynolds number turbulent wall flows. Phil. Trans. A 375, 20160092.
Deguchi, K. & Hall, P. 2014 The high-Reynolds-number asymptotic development of nonlinear equilibrium states in plane Couette flow. J. Fluid Mech. 750, 99112.
Deguchi, K. & Hall, P. 2015 Free-stream coherent structures in growing boundary-layers: a link to near wall streaks. J. Fluid Mech. 778, 451484.
Deguchi, K., Hall, P. & Walton, A. G. 2013 The emergence of localized vortex–wave states in plane Couette flow. J. Fluid Mech. 721, 5885.
Dempsey, L. J., Deguchi, K., Hall, P. & Walton, A. G. 2016 Localized vortex/Tollmien–Schlichting wave interaction states in plane Poiseuille flow. J. Fluid Mech. 791, 97121.
Duguet, Y., Schlatter, P., Hennigson, D. & Eckhardt, B. 2012 Self-sustained localized structures in boundary-layer flow. Phys. Rev. Lett. 108, 044501.
Gibson, J. F., Halcrow, J. & Cvitanovic, P. 2008 Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech. 611, 107130.
Hall, P. 1988 The nonlinear development of Görtler vortices in growing boundary layers. J. Fluid Mech. 193, 243266.
Hall, P. 1995 A phase equation approach to boundary layer transition: Tollmien–Schlichting waves. J. Fluid Mech. 304, 185212.
Hall, P. & Horseman, N. J. 1991 The linear inviscid secondary instability of longitudinal vortex structures in boundary layers. J. Fluid Mech. 232, 357375.
Hall, P. & Lakin, W. D. 1988 The fully nonlinear development of Görtler vortices in growing boundary layers. Proc. R. Soc. Lond. A 415, 421444.
Hall, P. & Sherwin, S. 2010 Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech. 661, 178205.
Hall, P. & Smith, F. T. 1988 The nonlinear interaction of Görtler vortices and Tollmien–Schlichting waves in curved channel flows. Proc. R. Soc. Lond. A 417, 255282.
Hall, P. & Smith, F. T. 1991 On strongly nonlinear vortex/wave interactions in boundary-layer transition. J. Fluid Mech. 227, 641666.
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70, 703716.
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.
Kreilos, T. & Eckhardt, B. 2012 Periodic orbits near onset of chaos in plane Couette flow. Chaos 22, 047505.
Maestri, J. L.2015 Vortex–wave interactions and exact coherent structures in shear flows. PhD thesis, Imperial College London.
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.
Silva, M. S., Philip, J., Hutchins, N. & Marusic, I. 2017 Interfaces of uniform momentum zones in turbulent boundary layers. J. Fluid Mech. 820, 451478.
Stuart, J. T. 1966 Double boundary layers in oscillatory viscous flows. J. Fluid Mech. 24, 673687.
Thiele, U., Archer, A. J., Robbins, M. J., Gomez, H. & Knobloch, E. 2013 Localizes states in the conserved Swift–Hohenberg equation with cubic nonlinearity. Phys. Rev. E 83, 042915.
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883900.
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93102.
Wang, J., Gibson, J. & Waleffe, F. 2007 Lower branch states in shear flows: transition and control. Phys. Rev. Lett. 98, 204501.
Wedin, H. & Kerswell, R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.
Willis, A. P. & Kerswell, R. R. 2009 Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarization and localised ‘edge’ states. J. Fluid Mech. 619, 213233.
Wu, X., Moin, P., Wallace, J. M., Sparta, J., Lozano-Duran, A. & Hickey, J. P. 2017 Transitional–turbulent spots and turbulent–turbulent spots in boundary layers. Proc. Natl Acad. Sci. USA 114 (87), E5292E5299.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Vortex–wave interaction arrays: a sustaining mechanism for the log layer?

  • Philip Hall (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed