Skip to main content Accessibility help

Vortex-ring-induced stratified mixing: mixing model

  • Jason Olsthoorn (a1) and Stuart B. Dalziel (a1)


The study of vortex-ring-induced mixing has been significant for understanding stratified turbulent mixing in the absence of a mean flow. Renewed interest in this topic has prompted the development of a one-dimensional model for the evolution of a stratified system in the context of isolated mixing events. This model is compared to numerical simulations and physical experiments of vortex rings interacting with a stratification. Qualitative agreement between the evolution of the density profiles is observed, along with close quantitative agreement of the mixing efficiency. This model highlights the key dynamical features of such isolated mixing events.


Corresponding author

Email address for correspondence:


Hide All
Archer, P. J., Thomas, T. G. & Coleman, G. N. 2009 The instability of a vortex ring impinging on a free surface. J. Fluid Mech. 642, 7994.
Balmforth, N. J., Llewellyn Smith, S. G. & Young, W. R. 1998 Dynamics of interfaces and layers in a stratified turbulent fluid. J. Fluid Mech. 355, 329358.
Fernando, H. J. 1991 Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23 (1), 455493.
Ivey, G. N., Winters, K. B. & Koseff, J. R. 2008 Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech. 40 (1), 169184.
Lawrie, A. G. W. & Dalziel, S. B. 2011 Turbulent diffusion in tall tubes. I. Models for Rayleigh–Taylor instability. Phys. Fluids 23 (8), 085109.
Linden, P. F. 1973 The interaction of a vortex ring with a sharp density interface: a model for turbulent entrainment. J. Fluid Mech. 60, 467480.
Linden, P. F. 1979 Mixing in stratified fluids. Geophys. Astrophys. Fluid Dyn. 13 (1), 323.
Norbury, J. 1973 A family of steady vortex rings. J. Fluid Mech. 57, 417431.
Olsthoorn, J. & Dalziel, S. B. 2015 Vortex-ring-induced stratified mixing. J. Fluid Mech. 781, 113126.
Olsthoorn, Jason & Dalziel, S. B. 2017 Three-dimensional visualization of the interaction of a vortex ring with a stratified interface. J. Fluid Mech. 820, 549579.
Park, Y.-G., Whitehead, J. A. & Gnanadeskian, A. 1994 Turbulent mixing in stratified fluids: layer formation and energetics. J. Fluid Mech. 279, 279311.
Shrinivas, A. B. & Hunt, G. R. 2015 Confined turbulent entrainment across density interfaces. J. Fluid Mech. 779, 116143.
Subich, C. J., Lamb, K. G. & Stastna, M. 2013 Simulation of the Navier–Stokes equations in three dimensions with a spectral collocation method. Intl J. Numer. Meth. Fluids 73 (2), 103129.
Tominaga, Y. & Stathopoulos, T. 2007 Turbulent schmidt numbers for {CFD} analysis with various types of flowfield. Atmos. Environ. 41 (37), 80918099.
Turner, J. S. 1968 The influence of molecular diffusivity on turbulent entrainment across a density interface. J. Fluid Mech. 33, 639656.
Vassilicos, J. C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47 (1), 95114.
Winters, K. B., Lombard, P. N., Riley, J. J. & D’Asaro, E. A. 1995 Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115128.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed