Skip to main content Accessibility help
×
×
Home

Vortex breakdown, linear global instability and sensitivity of pipe bifurcation flows

  • Kevin K. Chen (a1), Clarence W. Rowley (a1) and Howard A. Stone (a1)

Abstract

Pipe bifurcations are common flow configurations in both natural and man-made systems. This study follows our previous report (Chen et al., Phys. Fluids, vol. 27, 2015, 034107) by describing three aspects of flows through junction angles of $70^{\circ }$ , $90^{\circ }$ and $110^{\circ }$ , with a square cross-section. First, the inflow creates tightly spiralling vortices in four quadrants of the junction. For sufficiently large Reynolds number $Re$ , these vortices undergo behaviour resembling steady near-axisymmetric breakdown. With increasing $Re$ , the flow through the $90^{\circ }$ junction remains steady and stable until the first Hopf bifurcation. Beyond the Hopf bifurcation, the vortices undergo a helical instability. The $70^{\circ }$ and $110^{\circ }$ junctions, however, first exhibit pitchfork bifurcations leading to asymmetric solutions. Second, the direct eigenmodes of the linearised flow are large in vortices in the outlet pipes, whereas the adjoint eigenmodes primarily reside in a small region in the inlet and the junction, near the front and back walls. Third, the sensitivities of the eigenvalues to spatially localised feedback and base flow modifications are greatest in and near the junction vortices. We highlight the regions of high growth rate and frequency sensitivity, as well as regions where the production and transport of perturbations by modifications of the base flow contribute most to the base flow sensitivity. The flow separation at the corners of the junction does not coincide with the eigenmodes or sensitivity regions.

Copyright

References

Hide All
Ahnert, T. & Baerwolff, G. 2014 Numerical comparison of hybridized discontinuous Galerkin and finite volume methods for incompressible flow. Intl J. Numer. Meth. Fluids 76, 267281.
Åkervik, E., Hœpffner, J., Ehrenstein, U. & Henningson, D. S. 2007 Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes. J. Fluid Mech. 579, 305314.
Armijo, L. 1966 Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Maths 16, 13.
Ault, J. T., Chen, K. K. & Stone, H. A. 2015 Downstream decay of fully developed Dean flow. J. Fluid Mech. 777, 219244.
Ault, J. T., Fani, A., Chen, K. K., Shin, S., Gallaire, F. & Stone, H. A. 2016 Vortex-breakdown-induced particle capture in branching junctions. Phys. Rev. Lett. 117, 084501.
Bagheri, S., Brandt, L. & Henningson, D. S. 2009 Input–output analysis, model reduction and control of the flat-plate boundary layer. J. Fluid Mech. 620, 263298.
Batchelor, G. K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20, 645658.
Bothe, D., Stemich, C. & Warnecke, H.-J. 2006 Fluid mixing in a T-shaped micro-mixer. Chem. Engng Sci. 61, 29502958.
Bottaro, A., Corbett, P. & Luchini, P. 2003 The effect of base flow variation on flow stability. J. Fluid Mech. 476, 293302.
Brown, G. L. & Lopez, J. M. 1990 Axisymmetric vortex breakdown. Part 2. Physical mechanisms. J. Fluid Mech. 221, 553576.
Chakraborty, P., Balachandar, S. & Adrian, R. J. 2005 On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.
Chandler, G. J., Juniper, M. P., Nichols, J. W. & Schmid, P. J. 2012 Adjoint algorithms for the Navier–Stokes equations in the low Mach number limit.. J. Comput. Phys. 231, 19001916.
Chen, K. K., Rowley, C. W. & Stone, H. A. 2015 Vortex dynamics in a pipe T-junction: recirculation and sensitivity. Phys. Fluids 27, 034107.
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.
Crow, S. C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8, 21722179.
Doorly, D. & Sherwin, S. 2009 Cardiovascular Mathematics, Modeling, Simulation and Applications, vol. 1. chap. 5. Springer.
Dreher, S., Kockmann, N. & Woias, P. 2009 Characterization of laminar transient flow regimes and mixing in T-shaped micromixers. Heat Transfer Engng 30, 91100.
Eloy, C. & Le Dizès, S. 1999 Three-dimensional instability of Burgers and Lamb–Oseen vortices in a strain field. J. Fluid Mech. 378, 145166.
Engler, M., Kockmann, N., Kiefer, T. & Woias, P. 2004 Numerical and experimental investigations on liquid mixing in static micromixers. Chem. Engng J. 101, 315322.
Fani, A., Camarri, S. & Salvetti, M. V. 2013 Investigation of the steady engulfment regime in a three-dimensional T-mixer. Phys. Fluids 25, 064102.
Ferziger, J. H. & Perić, M. 2002 Computational Methods for Fluid Dynamics, 3rd edn. Springer.
Franklin, G. F., Powell, J. D. & Emami-Naeini, A. 2010 Feedback Control of Dynamic Systems, 6th edn. Prentice Hall.
Gallaire, F. O., Ruith, M., Meiburg, E., Chomaz, J.-M. & Huerre, P. 2006 Spiral vortex breakdown as a global mode. J. Fluid Mech. 549, 7180.
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.
Gresho, P. M. & Sani, R. L. 1987 On pressure boundary conditions for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 7, 11111145.
Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42. Springer.
Hall, M. G. 1972 Vortex breakdown. Annu. Rev. Fluid Mech. 4, 195218.
Haller, D., Woias, P. & Kockmann, N. 2009 Simulation and experimental investigation of pressure loss and heat transfer in microchannel networks containing bends and T-junctions. Intl J. Heat Mass Transfer 52, 26782689.
Haller, G. 2005 An objective definition of a vortex. J. Fluid Mech. 525, 126.
Haward, S. J., Poole, R. J., Alves, M. A., Oliveira, P. J., Goldenfeld, N. & Shen, A. Q. 2016 Tricritical spiral vortex instability in cross-slot flow. Phys. Rev. E 93, 031101.
Heaton, C. J., Nichols, J. W. & Schmid, P. J. 2009 Global linear stability of the non-parallel Batchelor vortex. J. Fluid Mech. 629, 139160.
Hill, D. C. 1992 A theoretical approach for analyzing the restabilization of wakes. In 30th AIAA Aerospace Sciences Meeting & Exhibit, American Institute of Aeronautics and Astronautics.
Issa, R. I. 1986 Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62, 4065.
Issa, R. I., Gosman, A. D. & Watkins, A. P. 1986 The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme. J. Comput. Phys. 62, 6682.
Karino, T., Goldsmith, H. L., Motomiya, M., Mabuchi, S. & Sohara, Y. 1987 Flow patterns in vessels of simple and complex geometries. Ann. N.Y. Acad. Sci. 516, 422441.
Kelley, C. T. 1995 Iterative Methods for Linear and Nonlinear Equations, Frontiers in Applied Mathematics, vol. 16. Society for Industrial and Applied Mathematics.
Kelley, C. T. 2003 Solving Nonlinear Equations with Newton’s Method, Fundamentals of Algorithms, vol. 1. Society for Industrial and Applied Mathematics.
Kockmann, N., Engler, M., Haller, D. & Woias, P. 2005 Fluid dynamics and transfer processes in bended microchannels. Heat Transfer Engng 26, 7178.
Lashgari, I., Tammisola, O., Citro, V., Juniper, M. P. & Brandt, L. 2014 The planar X-junction flow: stability analysis and control. J. Fluid Mech. 753, 128.
Le Dizès, S. & Laporte, F. 2002 Theoretical predictions for the elliptical instability in a two-vortex flow. J. Fluid Mech. 471, 169201.
Leibovich, S. 1978 The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10, 221246.
Leibovich, S. 1984 Vortex stability and breakdown: survey and extension. AIAA J. 22, 11921206.
Leweke, T. & Williamson, C. H. K. 1998 Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85119.
Loiseleux, T., Chomaz, J.-M. & Huerre, P. 1998 The effect of swirl on jets and wakes: linear instability of the Rankine vortex with axial flow. Phys. Fluids 10, 11201134.
Loiseleux, T., Delbende, I. & Huerre, P. 2000 Absolute and convective instabilities of a swirling jet/wake shear layer. Phys. Fluids 12, 375380.
Lopez, J. M. 1990 Axisymmetric vortex breakdown. Part 1. Confined swirling flow. J. Fluid Mech. 221, 533552.
Lopez, J. M. & Perry, A. D. 1992 Axisymmetric vortex breakdown. Part 3. Onset of periodic flow and chaotic advection. J. Fluid Mech. 234, 449471.
Lucca-Negro, O. & O’Doherty, T. 2001 Vortex breakdown: a review. Prog. Energy Combust. Sci. 27, 431481.
Mamun, C. K. & Tuckerman, L. S. 1995 Asymmetry and Hopf bifurcation in spherical Couette flow. Phys. Fluids 7, 8091.
Marquet, O., Sipp, D. & Jacquin, L. 2008 Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech. 615, 221252.
Meliga, P., Gallaire, F. & Chomaz, J.-M. 2012 A weakly nonlinear mechanism for mode selection in swirling jets. J. Fluid Mech. 699, 216262.
Oberleithner, K., Sieber, M., Nayeri, C. N., Paschereit, C. O., Petz, C., Hege, H.-C., Noack, B. R. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.
Olendraru, C. & Sellier, A. 2002 Viscous effects in the absolute–convective instability of the Batchelor vortex. J. Fluid Mech. 459, 371396.
Pierrehumbert, R. T. 1986 Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Lett. 57, 21572159.
Qadri, U. A., Mistry, D. & Juniper, M. P. 2013 Structural sensitivity of spiral vortex breakdown. J. Fluid Mech. 720, 558581.
Saad, Y. & Schultz, M. H. 1986 GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856869.
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows, Applied Mathematical Sciences, vol. 142. Springer.
Senn, S. M. & Poulikakos, D. 2004 Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells. J. Power Sources 130, 178191.
Trefethen, L. N. & Bau, D. III. 1997 Numerical Linear Algebra. Society for Industrial and Applied Mathematics.
Tuckerman, L. & Barkley, D. 2000 Bifurcation analysis for timesteppers. In Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, The IMA Volumes in Mathematics and its Applications, vol. 119, pp. 453466. Springer.
Vigolo, D., Radl, S. & Stone, H. A. 2014 Unexpected trapping of particles at a T junction. Proc. Natl Acad. Sci. USA 111, 47704775.
Weller, H. H., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620631.
White, F. M. 2005 Viscous Fluid Flow, 3rd edn. McGraw-Hill.
Winters, K. H. 1987 A bifurcation study of laminar flow in a curved tube of rectangular cross-section. J. Fluid Mech. 180, 343369.
Yuen, P. K. & Bau, H. H. 1996 Rendering a subcritical Hopf bifurcation supercritical. J. Fluid Mech. 317, 91109.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed