Skip to main content Accessibility help
×
Home

Virtual mass and drag in two-phase flow

  • B. U. Felderhof (a1) (a2)

Abstract

We study virtual mass and drag effects in a fluid suspension consisting of spherical particles immersed in an incompressible, nearly inviscid fluid. We derive average equations of motion for the fluid phase and the particle phase by the method of ensemble averaging. We show that the virtual mass and drag coefficients may be expressed exactly in terms of the dielectric constant of a corresponding dielectric suspension with the same distribution of particles. We make numerical predictions for the case of an equilibrium distribution of hard spheres.

Copyright

References

Hide All
Batchelor, G. K.: 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Batchelor, G. K.: 1988 A new theory of the instability of a uniform fluidized bed. J. Fluid Mech. 193, 75.
Beran, M.: 1965 Use of the variational approach to determine bounds for the effective permittivity in random media. Nuovo Cimento 38, 771.
Biesheuvel, A. & Spoelstra, S., 1989 The added mass coefficient of a dispersion of spherical gas bubbles in liquid. Intl J. Multiphase Flow 15, 911.
Biesheuvel, A. & Van Wijngaahden, L.: 1984 Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. J. Fluid Mech. 148, 301.
Buyevich, Yu. A., 1971 Statistical hydrodynamics of disperse systems. J. Fluid Mech. 49, 489.
Cichocki, B. & Felderhof, B. U., 1988a Renormalized cluster expansion for multiple scattering in disordered systems. J. Statist. Phys. 51, 57.
Cichocki, B. & Felderhof, B. U., 1988b Dielectric constant of polarizable, nonpolar fluids and suspensions. J. Statist. Phys. 53, 499.
Cichocki, B. & Felderhof, B. U., 1989 Electrostatic spectrum and dielectric constant of nonpolar hard sphere fluids. J. Chem. Phys. 90, 4960.
Cook, T. L. & Harlow, F. H., 1984 Virtual mass in multiphase flow. Intl. J. Multiphase Flow 10, 691.
Drew, D. A.: 1983 Mathematical modeling of two-phase flow. Ann. Rev. Fluid Mech. 15, 261.
Felderhof, B. U.: 1976 Force density induced on a sphere in linear hydrodynamics. II. Moving sphere, mixed boundary conditions. Physica 84 A, 569 (and Erratum Physica 88 A, 1977, 61).
Felderhof, B. U.: 1982 Bounds for the effective dielectric constant of a suspension of uniform spheres. J. Phys. C: Solid State Phys. 15, 3953.
Felderhof, B. U.: 1988 Sedimentation and convective flow in suspensions of spherical particles. Physica 153 A, 217.
Felderhof, B. U., Ford, G. W. & Cohen, E. G. D. 1982 Two-particle cluster integral in the expansion of the dielectric constant. J. Statist. Phys. 28, 649.
Felderhof, B. U. & Jones, R. B., 1986 Hydrodynamic scattering theory of flow about a sphere. Physica 136 A, 77.
Geurst, J. A.: 1985 Virtual mass in two-phase bubbly flow. Physica 129 A, 233.
Geurst, J. A.: 1986 Variational principles and two-fluid hydrodynamics of bubbly liquid/gas mixtures. Physica 135 A, 455
Hansen, J. P. & McDonald, I. R., 1986 Theory of Simple Liquids, 2nd edn. Academic.
Jackson, J. D.: 1962 Classical Electrodynamics. Wiley.
Kok, J. B. W.: 1988 Kinetic energy and added mass of hydrodynamically interacting gas bubbles in liquid. Physica 148 A, 240.
Lamb, H.: 1932 Hydrodynamics. Cambridge University Press.
Landau, L. D. & Lifshitz, E. M., 1961 Fluid Mechanics. Pergamon.
Levich, V. G.: 1962 Physicochemical Hydrodynamics. Prentice-Hall.
Lighthill, M. J.: 1986 An Introduction to Theoretical Fluid Mechanics. Oxford University Press.
Milne–Thomson, L. M.: 1968 Theoretical Hydrodynamics, 5th edn. Macmillan.
Torquato, S.: 1985 Electrical conductivity of two-phase disordered composite media. J. Appl. Phys. 58, 3790.
Torquato, S. & Lado, F., 1986 Effective properties of two-phase disordered composite media. II. Evaluation of bounds on the conductivity and bulk modulus of dispersions of impenetrable spheres. Phys. Rev. B 33, 6428.
Van Wijngaarden, L.: 1976 Hydrodynamic interaction between gas bubbles in liquid. J. Fluid Mech. 77, 27.
Zuber, N.: 1964 On the dispersed two-phase flow in the laminar flow regime. Chem. Engng Sci. 19, 897.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Virtual mass and drag in two-phase flow

  • B. U. Felderhof (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed