Skip to main content Accessibility help
×
Home

Very-large-scale motions in rough-bed open-channel flow

  • S. M. Cameron (a1), V. I. Nikora (a1) and M. T. Stewart (a1)

Abstract

Long-duration particle image velocimetry measurements in rough-bed open-channel flows (OCFs) reveal that the pre-multiplied spectra of the streamwise velocity have a bimodal distribution due to the presence of large- and very-large-scale motions (LSMs and VLSMs, respectively). The existence of VLSMs in boundary layers, pipes and closed channels has been acknowledged for some time, but strong supporting evidence for their presence in OCF has been lacking. The data reported in this paper fill this gap. Length scales of the LSMs and VLSMs in OCF exhibit different scaling properties; whereas the streamwise length of the LSM scales with the flow depth, the VLSM streamwise length does not scale purely with flow depth and may additionally depend on other scales such as the channel width, roughness height or viscous length. The transverse extent of the LSMs was found to increase with increasing elevation, but the VLSM transverse scale is anchored around two flow depths. The origin and nature of LSMs and VLSMs are still to be resolved, but differences in their scaling suggest that VLSMs in rough-bed OCFs form independently rather than as a spatial alignment of LSMs.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Very-large-scale motions in rough-bed open-channel flow
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Very-large-scale motions in rough-bed open-channel flow
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Very-large-scale motions in rough-bed open-channel flow
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: s.cameron@abdn.ac.uk

References

Hide All
Adrian, R. J. & Marusic, I. 2012 Coherent structures in flow over hydraulic engineering surfaces. J. Hydraul Res. 50 (5), 451464.
Astarita, T. & Cardone, G. 2005 Analysis of interpolation schemes for image deformation methods in PIV. Exp. Fluids 38 (2), 233243.
Bailey, S. C. C., Vallikivi, M., Hultmark, M. & Smits, A. J. 2014 Estimating the value of von Kármán’s constant in turbulent pipe flow. J. Fluid Mech. 749, 7998.
Balakumar, B. J. & Adrian, R. J. 2007 Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond. A 365 (1852), 665681.
Bayazit, M. 1976 Free surface flow in a channel of large relative roughness. J. Hydraul Res. 14 (2), 115126.
Bigillon, F., Niño, Y. & Garcia, M. H. 2006 Measurements of turbulence characteristics in an open-channel flow over a transitionally-rough bed using particle image velocimetry. Exp. Fluids 41 (6), 857867.
Cameron, S., Nikora, V. & Coleman, S. 2008 Double-averaged velocity and stress distributions for hydraulically-smooth and transitionally-rough turbulent flows. Acta Geophys. 56 (3), 642653.
Cameron, S. M. & Nikora, V. I. 2008 Eddy convection velocity for smooth- and rough-bed open-channel flows: particle image velocimetry study. In Proceedings. of International Conference on Fluvial Hydraulics, River Flow 2008, Turkey, vol. 1, pp. 143150. Kubaba Congress Department and Travel Services.
Cameron, S. M., Nikora, V. I., Albayrak, I., Miler, O., Stewart, M. & Siniscalchi, F. 2013 Interactions between aquatic plants and turbulent flow: a field study using stereoscopic PIV. J. Fluid Mech. 732, 345372.
Dittrich, A. & Koll, K. 1997 Velocity field and resistance of flow over rough surfaces with large and small relative submergence. Intl J. Sedim. Res. 12 (3), 2133.
Franca, M. J. & Brocchini, M. 2015 Turbulence in rivers. In Rivers – Physical, Fluvial and Environmental Processes, pp. 5178. Springer.
Franca, M. J. & Lemmin, U. 2005 Cross-section periodicity of turbulent gravel-bed river flows. In Proceedings of the 4th River, Coastal and Estuarine Morphodynamics: RCEM 2005, vol. 1, pp. 203210. CRC Press.
Grinvald, D. I. & Nikora, V. I. 1988 River Turbulence. Hydrometeoizdat.
Hurther, D. & Lemmin, U. 2000 Shear stress statistics and wall similarity analysis in turbulent boundary layers using a high-resolution 3-D ADVP. IEEE J. Ocean. Engng 25 (4), 446457.
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.
Hwang, Y. & Cossu, C. 2010 Self-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett. 105 (4), 044505.
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.
Marusic, I. & Hutchins, N. 2008 Study of the log-layer structure in wall turbulence over a very large range of Reynolds number. Flow Turbul. Combust. 81 (1-2), 115130.
Monty, J. P., Hutchins, N., Ng, H. C. H., Marusic, I. & Chong, M. S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.
Nagib, H. M. & Chauhan, K. A. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20 (10), 1518.
Nezu, I. 2005 Open-channel flow turbulence and its research prospect in the 21st century. J. Hydraul. Engng 131 (4), 229246.
Nezu, I. & Nakagawa, H. 1993 Turbulence in Open Channel Flows. Balkema.
Nikora, V. & Goring, D. 2000a Eddy convection velocity and Taylor’s hypothesis of ‘frozen’ turbulence in a rough-bed open-channel flow. J. Hydrosci. Hydraul. Engng 18 (2), 7591.
Nikora, V. & Goring, D. 2000b Flow turbulence over fixed and weakly mobile gravel beds. J. Hydraul. Engng 126 (9), 679690.
Nikora, V., Koll, K., McLean, S., Dittrich, A. & Aberle, J. 2002 Zero-plane displacement for rough-bed open-channel flows. In Proceedings of International Conference on Fluvial Hydraulics, River Flow 2002, Belgium, vol. 1, pp. 8391. Balkema.
Nikora, V., McEwan, I., McLean, S., Coleman, S., Pokrajac, D. & Walters, R. 2007 Double-averaging concept for rough-bed open-channel and overland flows: theoretical background. J. Hydraul. Engng 133 (8), 873883.
Raupach, M. R. 1981 Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J. Fluid Mech. 108, 363382.
Roy, A. G., Buffin-Belanger, T., Lamarre, H. & Kirkbride, A. D. 2004 Size, shape and dynamics of large-scale turbulent flow structures in a gravel-bed river. J. Fluid Mech. 500, 127.
Stewart, M. T.2014. Turbulence structure of rough-bed open-channel flow. PhD thesis, University of Aberdeen.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Very-large-scale motions in rough-bed open-channel flow

  • S. M. Cameron (a1), V. I. Nikora (a1) and M. T. Stewart (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed