Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-28T11:31:47.309Z Has data issue: false hasContentIssue false

Velocity measurements in an oscillating plane jet issuing into a moving air stream

Published online by Cambridge University Press:  12 April 2006

J. M. Simmons
Affiliation:
Department of Mechanical Engineering, University of Queensland, St Lucia, Australia
M. F. Platzer
Affiliation:
Department of Aeronautics, Naval Postgraduate School, Monterey, California
T. C. Smith
Affiliation:
Department of Aeronautics, Naval Postgraduate School, Monterey, California

Abstract

Hot-wire anemometer measurements in a plane jet issuing at a harmonically oscillating angle into a moving air stream have been made to aid the understanding of oscillatory jet flows in general and flow past aerofoils with oscillating jet flaps in particular. The rates of velocity decay and jet spreading are shown to be greater and less, respectively, than those for a steady jet parallel to the air stream. The shapes of instantaneous velocity profiles and limited measurements of turbulence intensity are similar to those for a steady jet in a parallel air stream if a correction is made for the small velocity difference across the curved jet. The motion of the jet centre-line indicates that flow path lines are similar to those for a steady jet flap over a significant range of frequency of jet oscillation. Finally, a quasi-steady jet flap theory is proposed for an analytical description of the major flow features.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berner, F. & Hermann, M. 1972 8th Int. Cong. Aero. Sci. A.I.A.A., 72–47.
Bradbury, L. J. S. & Riley, J. 1967 J. Fluid Mech. 27, 381.
Bremhorst, K. & Harch, W. H. 1977 A.S.M.E. Symp. Turbulent Shear Flows, Pennsylvania State Univ.
Chin, Y. T. 1977 Lockheed-Georgia Co. Rep.
Crow, S. C. & Champagne, F. H. 1971 J. Fluid Mech. 48, 547.
Curtet, R. M. & Girad, J. P. 1973 A.S.M.E. Symp. Fluid Mech. Mixing.
Dimmock, N. A. 1955 Nat. Gas Turbine Establ. Rep. R 175.
Erickson, J. C. 1962 Ph.D. thesis, Cornell University.
Foa, J. V. 1958 Appl. Mech. Rev. 11, 655.
Halsey, N. D. 1974 J. Aircraft 11, 540.
Harsha, P. T. 1971 Arnold Enging Development Center Rep. AEDC-TR-71-36.
Heskestad, G. 1965 J. Appl. Mech. 32, 721.
Johnson, W. S. & Yang, T. 1968 A.S.M.E. Winter Ann. Meeting Energy Systems Exposition.
Korbacher, G. K. & Sridhar, K. 1960 Inst. Aerophys., Univ. Toronto Rev. UTIA 14.
Kretz, M. 1973 Giravions Dorand, Suresnes, France Rep. DE 07–44 E5.
Lockwood, R. M. 1963 Hiller Aircraft Co. Rep. ARD-308.
Miller, D. R. & Comings, E. W. 1957 J. Fluid Mech. 3, 1.
Potter, G. E. 1972 Ph.D. thesis, Pennsylvania State University.
Simmons, J. M. 1976a A.I.A.A. J. 14, 741.
Simmons, J. M. 1976b A.I.A.A. J. 14, 1297.
Simmons, J. M. & Platzer, M. F. 1971 J. Aircraft 8, 587.
Spence, D. A. 1956 Proc. Roy. Soc. A 238, 46.
Spence, D. A. 1965 Phil. Trans. Roy. Soc. A 257, 445.
Takeuchi, K. 1970 M.S. thesis, Pennsylvania State University.
Trenka, A. R. & Erickson, J. C. 1970 Cornell Aero. Lab. Rep. CAL AC-2260-S-1.
Van Der Hegge Zijnen, B. G. 1958 Appl. Sci. Rev. A 7, 293.
Viets, H. 1975 A.I.A.A. J. 13, 1375.
Williams, J. R., Ambrosiani, J. P. & Palmer, W. E. 1972 Columbus Aircraft Div./North American Rockwell Rep. NR 72H-325.
Woods, L. C. 1961 The Theory of Subsonic Plane Flow. Cambridge University Press.