Skip to main content Accessibility help
×
Home

Velocity and acceleration statistics in rapidly rotating Rayleigh–Bénard convection

  • Hadi Rajaei (a1), Kim M. J. Alards (a1), Rudie P. J. Kunnen (a1) and Herman J. H. Clercx (a1)

Abstract

Background rotation causes different flow structures and heat transfer efficiencies in Rayleigh–Bénard convection. Three main regimes are known: rotation unaffected, rotation affected and rotation dominated. It has been shown that the transition between rotation-unaffected and rotation-affected regimes is driven by the boundary layers. However, the physics behind the transition between rotation-affected and rotation-dominated regimes are still unresolved. In this study, we employ the experimentally obtained Lagrangian velocity and acceleration statistics of neutrally buoyant immersed particles to study the rotation-affected and rotation-dominated regimes and the transition between them. We have found that the transition to the rotation-dominated regime coincides with three phenomena; suppressed vertical motions, strong penetration of vortical plumes deep into the bulk and reduced interaction of vortical plumes with their surroundings. The first two phenomena are used as confirmations for the available hypotheses on the transition to the rotation-dominated regime while the last phenomenon is a new argument to describe the regime transition. These findings allow us to better understand the rotation-dominated regime and the transition to this regime.

Copyright

Corresponding author

Email address for correspondence: hadi_rajaei@yahoo.com

References

Hide All
Agrawal, B. N. 1993 Dynamic characteristics of liquid motion in partially filled tanks of a spinning spacecraft. J. Guid. Control Dyn. 16, 636640.
Alards, K. M. J., Rajaei, H., Del Castello, L., Kunnen, R. P. J., Toschi, F. & Clercx, H. J. H. 2017 Geometry of tracer trajectories in rotating turbulent flows. Phys. Rev. Fluids 2, 044601.
Boubnov, B. M. & Golitsyn, G. S. 1986 Experimental study of convective structures in rotating fluids. J. Fluid Mech. 167, 503531.
Busse, F. H. 2010 Mean zonal flows generated by librations of a rotating spherical cavity. J. Fluid Mech. 650, 505512.
Chan, S.-K. 1974 Investigation of turbulent convection under a rotational constraint. J. Fluid Mech. 64, 477506.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Cheng, J. S., Stellmach, S., Ribeiro, A., Grannan, A., King, E. M. & Aurnou, J. M. 2015 Laboratory-numerical models of rapidly rotating convection in planetary cores. Geophys. J. Intl 201, 117.
Constantin, P., Hallstrom, C. & Putkaradze, V. 1999 Heat transport in rotating convection. Physica D 125, 275284.
Del Castello, L. & Clercx, H. J. H. 2011 Lagrangian velocity autocorrelations in statistically steady rotating turbulence. Phys. Rev. E 83, 056316.
Doering, C. R. & Constantin, P. 2001 On upper bounds for infinite Prandtl number convection with or without rotation. J. Maths Phys. 42, 784795.
Ecke, R. E. & Niemela, J. J. 2014 Heat transport in the geostrophic regime of rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 113, 114301.
Gans, R. F. 1970 On the precession of a resonant cylinder. J. Fluid Mech. 41, 865872.
Gervais, P., Baudet, C. & Gagne, Y. 2007 Acoustic Lagrangian velocity measurement in a turbulent air jet. Exp. Fluids 42, 371384.
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
Grooms, I., Julien, K., Weiss, J. B. & Knobloch, E. 2010 Model of convective Taylor columns in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 104, 224501.
Hart, J. E. & Kittelman, S. 1996 Instabilities of the sidewall boundary layer in a differentially driven rotating cylinder. Phys. Fluids 8, 692696.
Horn, S. & Aurnou, J. M. 2018 Regimes of Coriolis-centrifugal convection. Phys. Rev. Lett. 120 (20), 204502.
Horn, S. & Shishkina, O. 2015 Toroidal and poloidal energy in rotating Rayleigh–Bénard convection. J. Fluid Mech. 762, 232255.
Hunt, J. C. R., Wray, A. A. & Moin, P.1988 Eddies, streams, and convergence zones in turbulent flows. Report CTR-S88, Center for Turbulence Research.
Joshi, P., Rajaei, H., Kunnen, R. P. J. & Clercx, H. J. H. 2016 Effect of particle injection on heat transfer in rotating Rayleigh–Bénard convection. Phys. Rev. Fluids 1 (8), 084301.
Julien, K., Knobloch, E., Rubio, A. M. & Vasil, G. M. 2012a Heat transport in low-Rossby-number Rayleigh–Bénard convection. Phys. Rev. Lett. 109, 254503.
Julien, K., Legg, S., McWlliams, J. & Werne, J. 1996 Rapidly rotating turbulent Rayleigh–Bénard convection. J. Fluid Mech. 322, 243273.
Julien, K., Rubio, A. M., Grooms, I. & Knobloch, E. 2012b Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 106, 392428.
King, E. M., Stellmach, S. & Aurnou, J. M. 2012 Heat transfer by rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 691, 568582.
King, E. M., Stellmach, S., Noir, J., Hansen, U. & Aurnou, J. M. 2009 Boundary layer control of rotating convection systems. Nature 457, 301304.
Kobine, J. J. 1995 Inertial wave dynamics in a rotating and precessing cylinder. J. Fluid Mech. 303, 233252.
Kunnen, R. P. J., Clercx, H. J. H. & Geurts, B. J. 2006 Heat flux intensification by vortical flow localization in rotating convection. Phys. Rev. E 74, 056306.
Kunnen, R. P. J., Clercx, H. J. H. & Geurts, B. J. 2008 Enhanced vertical inhomogeneity in turbulent rotating convection. Phys. Rev. Lett. 101, 174501.
Kunnen, R. P. J., Corre, Y. & Clercx, H. J. H. 2014 Vortex plume distribution in confined turbulent rotating convection. Europhys. Lett. 104, 54002.
Kunnen, R. P. J., Geurts, B. J. & Clercx, H. J. H. 2010 Experimental and numerical investigation of turbulent convection in a rotating cylinder. J. Fluid Mech. 642, 445476.
Kunnen, R. P. J., Ostilla-Mónico, R., van der Poel, E. P., Verzicco, R. & Lohse, D. 2016 Transition to geostrophic convection: the role of the boundary conditions. J. Fluid Mech. 799, 413432.
Kunnen, R. P. J., Stevens, R. J. A. M., Overkamp, J., Sun, C., van Heijst, G. J. F. & Clercx, H. J. H. 2011 The role of Stewartson and Ekman layers in turbulent rotating Rayleigh–Bénard convection. J. Fluid Mech. 688, 422442.
Le Bars, M., Cébron, D. & Le Gal, P. 2015 Flows driven by libration, precession, and tides. Annu. Rev. Fluid Mech. 47, 163193.
Liao, X. & Zhang, K. 2012 On flow in weakly precessing cylinders: the general asymptotic solution. J. Fluid Mech. 709, 610621.
Liu, Y. & Ecke, R. E. 1997 Heat transport scaling in turbulent Rayleigh–Bénard convection: effects of rotation and Prandtl number. Phys. Rev. Lett. 79, 2257.
Liu, Y. & Ecke, R. E. 2009 Heat transport measurements in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. E 80, 036314.
Lopez, J. M. & Marques, F. 2010 Sidewall boundary layer instabilities in a rapidly rotating cylinder driven by a differentially corotating lid. Phys. Fluids 22, 114109.
Lopez, J. M. & Marques, F. 2014 Rapidly rotating cylinder flow with an oscillating sidewall. Phys. Rev. E 89, 013013.
Lüthi, B., Tsinober, A. & Kinzelbach, W. 2005 Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech. 528, 87118.
Maas, H. G., Gruen, A. & Papantoniou, D. 1993 Particle tracking velocimetry in three-dimensional flows. Part I. Photogrammetric determination of particle coordinates. Exp. Fluids 15, 133146.
Malik, N. A., Dracos, T. & Papantoniou, D. A. 1993 Particle tracking velocimetry in three-dimensional flows. Part II. Particle tracking. Exp. Fluids 15, 279294.
Manasseh, R. 1992 Breakdown regimes of inertia waves in a precessing cylinder. J. Fluid Mech. 243, 261296.
Meunier, P., Eloy, C., Lagrange, R. & Nadal, F. 2008 A rotating fluid cylinder subject to weak precession. J. Fluid Mech. 599, 405440.
Mordant, N., Crawford, A. M. & Bodenschatz, E. 2004a Experimental Lagrangian acceleration probability density function measurement. Physica D 193, 245251.
Mordant, N., Lévêque, E. & Pinton, J.-F. 2004b Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. New J. Phys. 6, 116.
Mordant, N., Metz, P., Michel, O. & Pinton, J.-F. 2001 Measurement of Lagrangian velocity in fully developed turbulence. Phys. Rev. Lett. 87, 214501.
Niemela, J. J., Babuin, S. & Sreenivasan, K. R. 2010 Turbulent rotating convection at high Rayleigh and Taylor numbers. J. Fluid Mech. 649, 509522.
Noir, J., Calkins, M. A., Lasbleis, M., Cantwell, J. & Aurnou, J. M. 2010 Experimental study of libration-driven zonal flows in a straight cylinder. Phys. Earth Planet. Inter. 182, 98106.
Pedlosky, J. 1979 Geophysical Fluid Dynamics, 2nd edn. Springer.
Portegies, J. W., Kunnen, R. P. J., van Heijst, G. J. F. & Molenaar, J. 2008 A model for vortical plumes in rotating convection. Phys. Fluids 20, 066602.
Rajaei, H.2017 Rotating Rayleigh–Bénard convetion. PhD thesis, Eindhoven University of Technology.
Rajaei, H., Joshi, P., Alards, K. M. J., Kunnen, R. P. J., Toschi, F. & Clercx, H. J. H. 2016a Transitions in turbulent rotating convection: a Lagrangian perspective. Phys. Rev. E 93, 043129.
Rajaei, H., Joshi, P., Kunnen, R. P. J. & Clercx, H. J. H. 2016b Flow anisotropy in rotating buoyancy-driven turbulence. Phys. Rev. Fluids 1, 044403.
Rajaei, H., Kunnen, R. P. J. & Clercx, H. J. H. 2017 Exploring the geostrophic regime of rapidly rotating convection with experiments. Phys. Fluids 29, 045105.
Rossby, H. T. 1969 A study of Bénard convection with and without rotation. J. Fluid Mech. 36, 309335.
Rubio, A. M., Julien, K., Knobloch, E. & Weiss, J. B. 2014 Upscale energy transfer in three-dimensional rapidly rotating turbulent convection. Phys. Rev. Lett. 112, 144501.
Sakai, S. 1997 The horizontal scale of rotating convection in the geostrophic regime. J. Fluid Mech. 333, 8595.
Sawford, B. L. 1991 Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids A 3, 15771586.
Schmitz, S. & Tilgner, A. 2009 Heat transport in rotating convection without Ekman layers. Phys. Rev. E 80, 015305.
Schmitz, S. & Tilgner, A. 2010 Transitions in turbulent rotating Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 104, 481489.
Song, H. & Tong, P. 2010 Scaling laws in turbulent Rayleigh–Bénard convection under different geometry. Europhys. Lett. 90, 44001.
Sprague, M., Julien, K., Knobloch, E. & Werne, J. 2006 Numerical simulation of an asymptotically reduced system for rotationally constrained convection. J. Fluid Mech. 551, 141174.
Stellmach, S., Lischper, M., Julien, K., Vasil, G., Cheng, J. S., Ribeiro, A., King, E. M. & Aurnou, J. M. 2014 Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys. Rev. Lett. 113, 254501.
Stevens, R. J. A. M., Clercx, H. J. H. & Lohse, D. 2010 Optimal Prandtl number for heat transfer in rotating Rayleigh–Bénard convection. New J. Phys. 12, 075005.
Stevens, R. J. A. M., Clercx, H. J. H. & Lohse, D. 2013 Heat transport and flow structure in rotating Rayleigh–Bénard convection. Eur. J. Mech. (B/Fluids) 40, 4149.
Stevens, R. J. A. M., Zhong, J.-Q., Clercx, H. J. H., Ahlers, G. & Lohse, D. 2009 Transitions between turbulent states in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 103, 024503.
Stewartson, K. 1959 On the stability of a spinning top containing liquid. J. Fluid Mech. 5, 577592.
Sun, C., Zhou, Q. & Xia, K.-Q. 2006 Cascades of velocity and temperature fluctuations in buoyancy-driven thermal turbulence. Phys. Rev. Lett. 97, 144504.
Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. A 20, 196211.
Vanyo, J. P. 2015 Rotating Fluids in Engineering and Science. Elsevier.
Vitanov, N. K. 2003 Convective heat transport in a rotating fluid layer of infinite Prandtl number: optimum fields and upper bounds on Nusselt number. Phys. Rev. E 67, 026322.
Vorobieff, P. & Ecke, R. E. 2002 Turbulent rotating convection: an experimental study. J. Fluid Mech. 458, 191218.
Voth, G. A., La Porta, A., Crawford, A. M., Alexander, J. & Bodenschatz, E. 2002 Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121160.
Weiss, S. & Ahlers, G. 2011a Heat transport by turbulent rotating Rayleigh–Bénard convection and its dependence on the aspect ratio. J. Fluid Mech. 684, 407426.
Weiss, S. & Ahlers, G. 2011b The large-scale flow structure in turbulent rotating Rayleigh–Bénard convection. J. Fluid Mech. 688, 461492.
Weiss, S., Stevens, R. J. A. M., Zhong, J.-Q., Clercx, H. J. H., Lohse, D. & Ahlers, G. 2010 Finite-size effects lead to supercritical bifurcations in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 105, 224501.
Willneff, J. 2002 3D particle tracking velocimetry based on image and object space information. Intl Arch. Photogramm. Rem. Sens. Spatial Inform. Sci. 34, 601606.
Willneff, J.2003 A spatio-temporal matching algorithm for 3D particle tracking velocimetry. PhD thesis, Swiss Federal Institute of Technology, Zürich.
Wu, C.-C. & Roberts, P. H. 2009 On a dynamo driven by topographic precession. Geophys. Astrophys. Fluid Dyn. 103, 467501.
Zhong, F., Ecke, R. E. & Steinberg, V. 1993 Rotating Rayleigh–Bénard convection: asymmetric modes and vortex states. J. Fluid Mech. 249, 135159.
Zhong, J.-Q. & Ahlers, G. 2010 Heat transport and the large-scale circulation in rotating turbulent Rayleigh–Bénard convection. J. Fluid Mech. 665, 300333.
Zhong, J.-Q., Stevens, R. J. A. M., Clercx, H. J. H., Verzicco, R., Lohse, D. & Ahlers, G. 2009 Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 044502.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed