Alemi Ardakani, H.
2016
A symplectic integrator for dynamic coupling between nonlinear vessel motion with variable cross-section and bottom topography and interior shallow-water sloshing. J. Fluids Struct.
65, 30–43.

Alemi Ardakani, H.
2017
A coupled variational principle for 2D interactions between water waves and a rigid body containing fluid. J. Fluid Mech.
827, R2 1–12.

Alemi Ardakani, H. & Bridges, T. J.
2011
Shallow-water sloshing in vessels undergoing prescribed rigid-body motion in three dimensions. J. Fluid Mech.
667, 474–519.

Bateman, H.
1932
Partial Differential Equations of Mathematical Physics. Cambridge University Press.

Bokhove, O. & Oliver, M.
2006
Parcel Eulerian–Lagrangian fluid dynamics of rotating geophysical flows. Proc. R. Soc. A
462, 2575–2592.

Bretherton, F. P.
1970
A note on Hamilton’s principle for perfect fluids. J. Fluid Mech.
44, 19–31.

Broer, L. J. F.
1974
On the Hamiltonian theory for surface waves. Appl. Sci. Res.
29, 430–446.

Calderer, A., Guo, X., Shen, L. & Sotiropoulos, F.
2018
Fluid–structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines. J. Comput. Phys.
355, 144–175.

Chernousko, F. L.
1965
Motion of a rigid body with cavities filled with viscous fluid at small Reynolds numbers. USSR Comput. Maths Math. Phys.
5, 99–127.

Chernousko, F. L.1972 *Motion of a Rigid Body with Cavities Containing a Viscous Fluid.* NASA Technical Translations.

Cotter, C. & Bokhove, O.
2010
Variational water-wave model with accurate dispersion and vertical vorticity. J. Engng Maths
67, 33–54.

Van Daalen, E. F. G., Van Groesen, E. & Zandbergen, P. J.
1993
A Hamiltonian formulation for nonlinear wave-body interactions. In Proceedings of the Eight International Workshop on Water Waves and Floating Bodies, Canada, pp. 159–163. IWWWFB.

Daniliuk, I. I.
1976
On integral functionals with a variable domain of integration. In Proceedings of the Steklov Institute of Mathematics, vol. 118, pp. 1–44. American Mathematical Society.

Desbrun, M., Gawlik, E. S., Gay-Balmaz, F. & Zeitlin, V.
2014
Variational discretization for rotating stratified fluids. J. Discrete Continuous Dyn. Syst.
34, 477–509.

Disser, K., Galdi, G. P., Mazzone, G. & Zunino, P.
2016
Intertial motions of a rigid body with a cavity filled with a viscous liquid. Arch. Rat. Mech. Anal.
221, 487–526.

Faltinsen, O. M & Timokha, A. N.
2009
Sloshing. Cambridge University Press.

Flanders, H.
1973
Differentiation under the integral sign. Am. Math. Mon.
80, 615–627.

Gagarina, E., Ambati, V. R., Nurijanyan, S., van der Vegt, J. J. W. & Bokhove, O.
2016
On variational and symplectic time integrators for Hamiltonian systems. J. Comput. Phys.
306, 370–389.

Gagarina, E., Ambati, V. R., van der Vegt, J. J. W. & Bokhove, O.
2014
Variational space–time (dis)continuous Galerkin method for nonlinear free surface water waves. J. Comput. Phys.
275, 459–483.

Gagarina, E., van der Vegt, J. & Bokhove, O.
2013
Horizontal circulation and jumps in Hamiltonian wave models. Nonlinear Process. Geophys.
20, 483–500.

Gawlik, E. S., Mullen, P., Pavlov, D., Marsden, J. E. & Desbrun, M.
2011
Geometric, variational discretization of continuum theories. Physica D
240, 1724–1760.

Gay-Balmaz, F., Marsden, J. E. & Ratiu, T. S.
2012
Reduced variational formulations in free boundary continuum mechanics. J. Nonlinear Sci.
22, 463–497.

Gerrits, J. & Veldman, A. E. P.
2003
Dynamics of liquid-filled spacecraft. J. Engng Maths
45, 21–38.

Greenhill, A. G.
1880
On the general motion of a liquid ellipsoid. Proc. Camb. Phil. Soc.
4, 4–14.

Van Groesen, E. & Andonowati
2017
Hamiltonian Boussinesq formulation of wave–ship interactions. Appl. Math. Model.
42, 133–144.

Holm, D. D., Marsden, J. E. & Ratiu, T. S.
1998a
The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Maths
137, 1–81.

Holm, D. D., Marsden, J. E. & Ratiu, T. S.
1998b
The Euler–Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett.
80, 4173–4176.

Holm, D. D., Marsden, J. E. & Ratiu, T. S.1999 The Euler–Poincaré equations in geophysical fluid dynamics. arXiv:chao-dyn/9903035.
Holm, D. D., Schmah, T. & Stoica, C.
2009
Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions. Oxford University Press.

Hough, S. S.
1895
The oscillations of a rotating ellipsoidal shell containing fluid. Phil. Trans. R. Soc. Lond. A
186, 469–506.

Ibrahim, R. A.
2005
Liquid Sloshing Dynamics. Cambridge University Press.

Kalogirou, A. & Bokhove, O.
2016
Mathematical and numerical modelling of wave impact on wave-energy buoys. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, p. 8. The American Society of Mechanical Engineers.

Kostyuchenko, A. G., Shkalikov, A. A. & Yurkin, M. Y.
1998
On the stability of a top with a cavity filled with a viscous fluid. Funct. Anal. Appl.
32, 100–113.

Lewis, D., Marsden, J. E., Montgomery, R. & Ratiu, T. S.
1986
The Hamiltonian structure for dynamic free boundary problems. Physica D
18, 391–404.

Leybourne, M., Batten, W. M. J., Bahaj, A. S., Minns, N. & O’Nians, J.
2014
Preliminary design of the OWEL wave energy converter pre-commercial demonstrator. Renewable Energy
61, 51–56.

Luke, J. C.
1967
A variational principle for a fluid with a free surface. J. Fluid Mech.
27, 395–397.

Lukovsky, I. A.
1976
Variational method in the nonlinear problems of the dynamics of a limited liquid volume with free surface. In Oscillations of Elastic Constructions with Liquid, pp. 260–264. Volna (in Russian).

Lukovsky, I. A.
2015
Nonlinear Dynamics: Mathematical Models for Rigid Bodies with a Liquid. De Gruyter.

Marsden, J. E. & Ratiu, T. S.
1999
Introduction to Mechanics and Symmetry. Springer.

Marsden, J. E. & West, M.
2001
Discrete mechanics and variational integrators. Acta Numerica
10, 357–514.

Mazer, A. & Ratiu, T. S.
1989
Hamiltonian formulation of adiabatic free-boundary Euler flows. J. Geom. Phys.
6, 271–291.

Miles, J. W.
1976
Nonlinear surface waves in closed basins. J. Fluid Mech.
75, 419–448.

Miles, J. W.
1977
On Hamilton’s principle for surface waves. J. Fluid Mech.
83, 153–158.

Miloh, T.
1984
Hamilton’s principle, Lagrange’s method, and ship motion theory. J. Ship Res.
28, 229–237.

Moiseyev, N. N. & Rumyantsev, V. V.
1968
Dynamic Stability of Bodies Containing Fluid. Springer.

Morrison, P. J.
1998
Hamiltonian description of the ideal fluid. Rev. Mod. Phys.
70, 467–521.

Murray, R. M., Lin, Z. X. & Sastry, S. S.
1994
A Mathematical Introduction to Robotic Manipulation. CRC Press.

Oliver, M.
2014
A variational derivation of the geostrophic momentum approximation. J. Fluid Mech.
751, R2 1–10.

Oliver, M.
2006
Variational asymptotics for rotating shallow water near geostrophy: a transformational approach. J. Fluid Mech.
551, 197–234.

O’Reilly, O. M.
2008
Intermediate Dynamics for Engineers: a Unified Treatment of Newton–Euler and Lagrangian Mechanics. Cambridge University Press.

Pavlov, D., Mullen, P., Tong, Y, Kanso, E., Marsden, J. E. & Desbrun, M.
2011
Sructure-preserving discretization of incompressible fluids. Physica D
240, 443–458.

Ramodanov, S. M. & Sidorenko, V. V.
2017
Dynamics of a rigid body with an ellipsoidal cavity filled with viscous fluid. Intl J. Non-Linear Mech.
95, 42–46.

Rumiantsev, V. V.
1966
On the theory of motion of rigid bodies with fluid-filled cavities. J. Appl. Math. Mech.
30, 57–77.

Rumyantsev, V. V.
1963
Lyapunov’s method in the study of the stability of rigid bodies with fluid-filled cavities. Izv. Akad. Nauk SSSR (Series Mekh. Mashinostr.)
6, 119–140.

Salmon, R.
1983
Practical use of Hamilton’s principle. J. Fluid Mech.
132, 431–444.

Salmon, R.
1988
Hamiltonian fluid mechanics. Annu. Rev. Fluid Mech.
20, 225–256.

Shepherd, T. G.
1990
Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Adv. Geophys.
32, 287–338.

Stokes, G. G.
1880
Mathematical and Physical Papers, vol. 1. Cambridge University Press.

Strygin, V. V. & Sobolev, V. A.
1988
Separation of Motions By the Integral Manifolds Method. Nauka (in Russian).

Timokha, A. N.
2016
The Bateman-Luke variational formalism in a sloshing with rotational flows. Dopov. Nac. Akad. Nauk Ukr.
4, 30–34.

Veldman, A. E. P., Gerrits, J., Luppes, R., Helder, J. A. & Vreeburg, J. P. B.
2007
The numerical simulation of liquid sloshing on board spacecraft. J. Comput. Phys.
224, 82–99.

Zakharov, V. E.
1968
Stability of periodic waves of finite-amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys.
9, 190–194.

Zhukovskii, N. Y.
1885
On the motion of a rigid body with cavities filled with a homogeneous liquid drop. Zh. Fiz.-Khim. Obs. Phys.
17, 81–113.

Zhukovskii, N. E.
1948
Motion of a rigid body having a cavity filled with fluid. Collected Works, vol. 1, pp. 31–152. Gostekhizdat.