Skip to main content Accessibility help

Using stratification to mitigate end effects in quasi-Keplerian Taylor–Couette flow

  • Colin Leclercq (a1), Jamie L. Partridge (a2), Pierre Augier (a2), Stuart B. Dalziel (a2) and Rich R. Kerswell (a1)...


Efforts to model accretion disks in the laboratory using Taylor–Couette flow apparatus are plagued with problems due to the substantial impact the end plates have on the flow. We explore the possibility of mitigating the influence of these end plates by imposing stable stratification in their vicinity. Numerical computations and experiments confirm the effectiveness of this strategy for restoring the axially homogeneous quasi-Keplerian solution in the unstratified equatorial part of the flow for sufficiently strong stratification and moderate layer thickness. If the rotation ratio is too large, however (e.g. ${\it\Omega}_{o}/{\it\Omega}_{i}=(r_{i}/r_{o})^{3/2}$ , where ${\it\Omega}_{o}/{\it\Omega}_{i}$ is the angular velocity at the outer/inner boundary and $r_{i}/r_{o}$ is the inner/outer radius), the presence of stratification can make the quasi-Keplerian flow susceptible to the stratorotational instability. Otherwise (e.g. for ${\it\Omega}_{o}/{\it\Omega}_{i}=(r_{i}/r_{o})^{1/2}$ ), our control strategy is successful in reinstating a linearly stable quasi-Keplerian flow away from the end plates. Experiments probing the nonlinear stability of this flow show only decay of initial finite-amplitude disturbances at a Reynolds number $Re=O(10^{4})$ . This observation is consistent with most recent computational (Ostilla-Mónico, et al. J. Fluid Mech., vol. 748, 2014, R3) and experimental results (Edlund & Ji, Phys. Rev. E, vol. 89, 2014, 021004) at high $Re$ , and reinforces the growing consensus that turbulence in cold accretion disks must rely on additional physics beyond that of incompressible hydrodynamics.


Corresponding author

Email address for correspondence:


Hide All
Abshagen, J., Heise, M., Pfister, G. & Mullin, T. 2010 Multiple localized states in centrifugally stable rotating flow. Phys. Fluids 22, 021702.
Avila, M. 2012 Stability and angular-momentum transport of fluid flows between corotating cylinders. Phys. Rev. Lett. 108, 124501.
Avila, M., Grimes, M., Lopez, J. M. & Marques, F. 2008 Global endwall effects on centrifugally stable flows. Phys. Fluids 20, 104104.
Balbus, S. A. 2011 Fluid dynamics: a turbulent matter. Nature 470, 475476.
Balbus, S. A. & Hawley, J. F. 1991 A powerful local shear instability in weakly magnetized disks. 1. Linear analysis. Astrophys. J. 376, 214222.
Balbus, S. A. & Hawley, J. F. 1998 Instability, turbulence and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 153.
Batchelor, G. K. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113133.
Chandrasekhar, S. 1960 The stability of non-dissipative Couette flow in hydromagnetics. Proc. Natl Acad. Sci. USA 46, 253257.
Czarny, O., Serre, E., Bontoux, P. & Lueptow, R. M. 2003 Interaction between Ekman pumping and the centrifugal instability in Taylor–Couette flow. Phys. Fluids 15, 467477.
Dalziel, S. B., Carr, M., Sveen, J. K. & Davies, P. A. 2007 Simultaneous synthetic Schlieren and PIV measurements for internal solitary waves. Meas. Sci. Technol. 18, 533547.
Dubrulle, B., Marié, L., Normand, C., Richard, D., Hersant, F. & Zahn, J.-P. 2005 A hydrodynamic shear instability in stratified disks. Astron. Astrophys. 429, 113.
Edlund, E. M. & Ji, H. 2014 Nonlinear stability of laboratory quasi-Keplerian flows. Phys. Rev. E 89, 021004.
Hollerbach, R. & Fournier, A. 2004 End-effects in rapidly rotating cylindrical Taylor–Couette flow. In AIP Conference Proceedings, vol. 733, pp. 114121.
Ji, H., Burin, M., Schartman, E. & Goodman, J. 2006 Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444, 343346.
Le Bars, M. & Le Gal, P. 2007 Experimental analysis of the stratorotational instability in a cylindrical Couette flow. Phys. Rev. Lett. 99 (6), 064502.
Le Dizès, S. & Riedinger, X. 2010 The strato-rotational instability of Taylor–Couette and Keplerian flows. J. Fluid Mech. 660, 147161.
Leclercq, C., Pier, B. & Scott, J. F. 2013 Temporal stability of eccentric Taylor–Couette–Poiseuille flow. J. Fluid Mech. 733, 6899.
Lopez, J. M., Marques, F. & Avila, M. 2013 The Boussinesq approximation in rapidly rotating flows. J. Fluid Mech. 737, 5677.
Lopez, J. M. & Shen, J. 1998 An efficient spectral-projection method for the Navier–Stokes equations in cylindrical geometries: I. Axisymmetric cases. J. Comput. Phys. 139, 308326.
Molemaker, M. J., McWilliams, J. C. & Yavneh, I. 2001 Instability and equilibration of centrifugally stable stratified Taylor–Couette flow. Phys. Rev. Lett. 86, 52705273.
Ostilla-Mónico, R., Verzicco, R., Grossmann, S. & Lohse, D. 2014 Turbulence decay towards the linearly stable regime of Taylor–Couette flow. J. Fluid Mech. 748, R3.
Paoletti, M. S. & Lathrop, D. P. 2011 Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett. 106, 024501.
Peyret, R. 2002 Spectral Methods for Incompressible Viscous Flow. Springer.
Rayleigh, L. 1917 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93, 148154.
Richard, D. & Zahn, J.-P. 1999 Turbulence in differentially rotating flows. Astron. Astrophys. 347, 734738.
Rüdiger, G. & Shalybkov, D. A. 2009 Stratorotational instability in MHD Taylor–Couette flows. Astron. Astrophys. 493, 375383.
Shalybkov, D. & Rüdiger, G. 2005 Stability of density-stratified viscous Taylor–Couette flows. Astron. Astrophys. 438 (2), 411417.
Turner, N. J., Fromang, S., Gammie, C., Klahr, H., Lesur, G., Wardle, M. & Bai, X.-N. 2014 Transport and Accretion in Planet-Forming Disks. University of Arizona Press.
Velikhov, E. P. 1959 Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. J. Expl Theor. Phys. 36, 13981404.
Yavneh, I., McWilliams, J. C. & Molemaker, M. J. 2001 Non-axisymmetric instability of centrifugally stable stratified Taylor–Couette flow. J. Fluid Mech. 448, 121.
Zeldovich, Y. B. 1981 On the friction of fluids between rotating cylinders. Proc. R. Soc. Lond. A 374, 299312.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed