Skip to main content Accessibility help

Unsteady wave pattern generation by water striders

  • Thomas Steinmann (a1), Maxence Arutkin (a2), Précillia Cochard (a1), Elie Raphaël (a2), Jérôme Casas (a1) and Michael Benzaquen (a3)...


We perform an experimental and theoretical study of the wave pattern generated by the leg strokes of water striders during a propulsion cycle. Using the synthetic schlieren method, we are able to measure the dynamic response of the free surface accurately. In order to match experimental conditions, we extend Bühler’s theory of impulsive forcing (J. Fluid Mech., vol. 573, 2007, pp. 211–236) to finite depth. We demonstrate the improved ability of this approach to reproduce the experimental findings, once the observed continuous forcing and hence non-zero temporal and spatial extent of the leg strokes is also taken into account.


Corresponding author

Email address for correspondence:


Hide All

Present address: Département de biologie, Université Laval, Québec, QC G1V 0A6, Canada.



Hide All
Basu, S., Yawar, A., Concha, A. & Bandi, M. M.2017 On angled bounce-off impact of a drop impinging on a flowing soap film arXiv:1705.05948.
Bleckmann, H., Borchardt, M., Horn, P. & Görner, P. 1994 Stimulus discrimination and wave source localization in fishing spiders (dolomedes triton and d.okefinokensis). J. Compar. Physiol. A 174 (3), 305316.
Bühler, O. 2007 Impulsive fluid forcing and water strider locomotion. J. Fluid Mech. 573, 211236.
Bush, J. W. M. & Hu, D. L. 2006 Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339369.
Denny, M. W. 2004 Paradox lost: answers and questions about walking on water. J. Expl Biol. 207 (10), 16011606.
Feldmann, O. & Mayinger, F. 2001 Optical measurements. Heat and Mass Transfer, 2nd edn. Springer.
Gao, P. & Feng, J. J. 2011 A numerical investigation of the propulsion of water walkers. J. Fluid Mech. 668, 363383.
Gierczak, L., Arutkin, M., Fadle, A., Benzaquen, M. & Raphael, E.2018 (in preparation).
Glasheen, J. W. & McMahon, T. A. 1996 A hydrodynamic model of locomotion in the basilisk lizard. Nature 380 (6572), 340.
Hu, D. L. & Bush, J. W. M. 2010 The hydrodynamics of water-walking arthropods. J. Fluid Mech. 644, 533.
Hu, D. L., Chan, B. & Bush, J. W. M. 2003 The hydrodynamics of water strider locomotion. Nature 424 (6949), 663.
Hu, D. L., Prakash, M., Chan, B. & Bush, J. W. M. 2007 Water-walking devices. Exp. Fluids 43, 769778.
Jia, X., Chen, Z., Riedel, A., Si, T., Hamel, W. R. & Zhang, M. 2015 Energy-efficient surface propulsion inspired by whirligig beetles. IEEE Trans. Robot. 31 (6), 14321443.
Keller, J. B. 1998 Surface tension force on a partly submerged body. Phys. Fluids 10 (11), 30093010.
Koh, J. S., Yang, E., Jung, G. P., Jung, S. P., Son, J. H., Lee, S. I. & Cho, K. J. 2015 Jumping on water: surface tension-dominated jumping of water striders and robotic insects. Science 349 (6247), 517521.
Lamb, H. 1993 Hydrodynamics. Cambridge Mathematical Library.
Moisy, F., Rabaud, M. & Salsac, K. 2009 A synthetic schlieren method for the measurement of the topography of a liquid interface. Exp. Fluids 46 (6), 1021.
Mukundarajan, H., Bardon, T. C., Kim, D. H. & Prakash, M. 2016 Surface tension dominates insect flight on fluid interfaces. J. Expl Biol. 219 (5), 752766.
Ortega-Jimenez, V. M., von Rabenau, L. & Dudley, R. 2017 Escape jumping by three age-classes of water striders from smooth, wavy and bubbling water surfaces. J. Expl Biol. 220 (15), 28092815.
Pizzo, N. E., Deike, L. & Melville, W. K. 2016 Current generation by deep-water breaking waves. J. Fluid Mech. 803, 275291.
Raphaël, E. & de Gennes, P.-G. 1996 Capillary gravity waves caused by a moving disturbance: wave resistance. Phys. Rev. E 53 (4), 3448.
Rinoshika, A. 2011 Vortical dynamics in the wake of water strider locomotion. J. Vis. 15, 145153.
Song, Y. S. & Sitti, M. 2007 Surface-tension-driven biologically inspired water strider robots: theory and experiments. IEEE Trans. Robot. 23 (3), 578589.
Sun, P., Zhao, M., Jiang, J. & Zheng, Y. 2018 The study of dynamic force acted on water strider leg departing from water surface. AIP Adv. 8 (1), 015228.
Suter, R. B. 2013 Spider locomotion on the water surface: biomechanics and diversity. J. Arachnol. 41 (2), 93101.
Sveen, J. K. & Cowen, E. A. 2004 Quantitative imaging techniques and their application to wavy flows. Adv. Coastal Ocean Engng 9, 1.
Tucker, V. A. 1969 Wave-making by whirligig beetles (gyrinidae). Science 166 (3907), 897899.
Vogel, S. 2013 Comparative Biomechanics: Life’s Physical World. Princeton University Press.
Voise, J. & Casas, J. 2010 The management of fluid and wave resistances by whirligig beetles. J. R. Soc. Interface 7, 343.
Voise, J. & Casas, J. 2014 Echolocation in whirligig beetles using surface waves: an unsubstantiated conjecture. In Studying Vibrational Communication, pp. 303317. Springer.
Wiese, K. 1974 The mechanoreceptive system of prey localization innotonecta. J. Compar. Physiol. A 92 (3), 317325.
Wilcox, R. S. 1972 Communication by surface waves. J. Compar. Physiol. A 80 (3), 255266.
Xu, Z., Lenaghan, S. C., Reese, B. E., Jia, X. & Zhang, M. 2012 Experimental studies and dynamics modeling analysis of the swimming and diving of whirligig beetles (coleoptera: Gyrinidae). PLoS Comput. Biol. 8 (11), e1002792.
Yang, K., Liu, G., Yan, J., Wang, T., Zhang, X. & Zhao, J. 2016a A water-walking robot mimicking the jumping abilities of water striders. Bioinspir. Biomim. 11 (6), 066002.
Yang, E., Son, J. H., Jablonski, P. G. & Kim, H. Y. 2016b Water striders adjust leg movement speed to optimize takeoff velocity for their morphology. Nat. Commun. 7 (13698).
Yuan, J. & Cho, S. K. 2012 Bio-inspired micro/mini propulsion at air–water interface: a review. J. Mech. Sci. Technol. 26 (12), 37613768.
Zheng, Y., Lu, H., Yin, W., Tao, D., Shi, L. & Tian, Y. 2016 Elegant shadow making tiny force visible for water-walking arthropods and updated archimedes principle. Langmuir 32 (41), 1052210528.
Zheng, J., Yu, K., Zhang, J., Wang, J. & Li, C. 2015 Modeling of the propulsion hydrodynamics for the water strider locomotion on water surface. Proc. Engng 126, 280284.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title
Supplementary materials

Steinmann et al. supplementary material 1
Steinmann et al. supplementary material

 Unknown (343 KB)
343 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed