Skip to main content Accessibility help
×
Home

Universal evaporation dynamics of ordered arrays of sessile droplets

  • Sandeep Hatte (a1) (a2), Keshav Pandey (a1), Khushboo Pandey (a3), Suman Chakraborty (a4) and Saptarshi Basu (a1) (a3)...

Abstract

Manipulation of an array of surface droplets organised in an ordered structure turns out to be of immense consequence in a wide variety of applications ranging from photonics, near field imaging and inkjet printing on the one hand to bio-molecular analysis and DNA sequencing on the other. While evaporation of a single isolated sessile droplet has been well studied, the collective evaporative dynamics of an ordered array of droplets on a solid substrate remains elusive. Physically, the closed region between the centre and side droplets in the ordered array reduces the mobility of the diffusing vapour, resulting in its accumulation along with enhanced local concentration and a consequent increment in the lifetime of the centre droplet. Here, we present a theoretical model to account for evaporation lifetime scaling in closely placed ordered linear droplet arrays. In addition, the present theory predicts the limiting cases of droplet interaction; namely, critical droplet separation for which interfacial interaction ceases to exist and minimum possible droplet separation (droplets on the verge of coalescence) for which the droplet system achieves maximum lifetime scaling. Further experimental evidence demonstrates the applicability of the present scaling theory to extended dimensions of the droplet array, generalising our physical conjecture. It is also worth noting that the theoretical time scale is applicable across a wide variety of drop–substrate combinations and initial droplet volumes. We also highlight that the scaling law proposed here can be extended seamlessly to other forms of confinement such as an evaporating droplet inside a mini-channel, as encountered in countless applications ranging from biomedical engineering to surface patterning.

Copyright

Corresponding author

Email address for correspondence: sbasu@iisc.ac.in

References

Hide All
Bansal, L., Hatte, S., Basu, S. & Chakraborty, S. 2017 Universal evaporation dynamics of a confined sessile droplet. Appl. Phys. Lett. 111 (10), 101601.10.1063/1.4996986
Boreyko, J. B., Hansen, R. R., Murphy, K. R., Nath, S., Retterer, S. T. & Collier, C. P. 2016 Controlling condensation and frost growth with chemical micropatterns. Sci. Rep. 6, 115.10.1038/srep19131
Brutin, D., Sobac, B., Loquet, B. & Sampol, J. 2011 Pattern formation in drying drops of blood. J. Fluid Mech. 667, 8595.10.1017/S0022112010005070
Calvert, P. 2001 Inkjet printing for materials and devices. Chem. Mater. 13 (10), 32993305.10.1021/cm0101632
Carrier, O., Shahidzadeh-bonn, N. & Zargar, R. 2016 Evaporation of water: evaporation rate and collective effects. J. Fluid Mech. 798, 774786.10.1017/jfm.2016.356
Cerf, A., Alava, T., Barton, R. A. & Craighead, H. G. 2011 Transfer-printing of single dna molecule arrays on graphene for high-resolution electron imaging and analysis. Nano Lett. 11 (10), 42324238.10.1021/nl202219w
Chen, X., Ma, R., Li, J. & Wang, Z. 2012 Evaporation of droplets on superhydrophobic surfaces: surface roughness and small droplet size effects. Phys. Rev. Lett. 109 (11), 16.
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389 (6653), 827829.10.1038/39827
Gans, B. D. & Schubert, U. S. 2003 Inkjet printing of polymer micro-arrays and libraries: instrumentation, requirements, and perspectives. Macromol. Rapid Commun. 22 (11), 659666.
Hatte, S., Dhar, R., Bansal, L., Chakraborty, S. & Basu, S. 2019 On the lifetime of evaporating confined sessile droplets. Colloids Surf. A 560, 7883.10.1016/j.colsurfa.2018.10.008
Hu, H. & Larson, R. G. 2002 Evaporation of a sessile droplet on a substrate. J. Phys. Chem B 106 (6), 13341344.10.1021/jp0118322
Hu, H. & Larson, R. G. 2005 Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21 (9), 39723980.10.1021/la0475270
Jyoti, A., Shaikeea, D. & Basu, S. 2016 Insight into the evaporation dynamics of a pair of sessile droplets on a hydrophobic substrate. Langmuir 32 (5), 13091318.
Jyoti, A., Shaikeea, D., Basu, S. & Bansal, L. 2017 Universal representations of evaporation modes in sessile droplets. PloS One 12 (9), 18.
K.Tang, A. G. 1994 Generation by electrospray of monodisperse water droplets for targeted drug delivery by inhalation. J. Aero. Sci. 25 (6), 12371249.10.1016/0021-8502(94)90212-7
Laghezza, G., Dietrich, E., Yeomans, J. M. & Lohse, D. 2016 Collective and convective effects compete in patterns of dissolving surface droplets. Soft Matt. 12 (26), 57875796.10.1039/C6SM00767H
Mallinson, S., Mcbain, G. D. & Horrocks, G.2016 Viscosity and surface tension of aqueous mixtures. In 20th Australasian Fluid Mechanics Conference Perth, Australia. Australasian Fluid Mechanics Society.
Nguyen, T. A. H. & Nguyen, A. V. 2012 On the lifetime of evaporating sessile droplets. Langmuir 28 (3), 19241930.10.1021/la2036955
Nguyen, T. A. H., Nguyen, A. V., Hampton, M. A., Xu, Z. P., Huang, L. & Rudolph, V. 2012 Theoretical and experimental analysis of droplet evaporation on solid surfaces. Chem. Engng Sci. 69 (1), 522529.10.1016/j.ces.2011.11.009
Picknett, R. G. & Bexon, R. 1977 The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61 (2), 336350.10.1016/0021-9797(77)90396-4
Pinheiro, L. B., Coleman, V. A., Hindson, C. M. & Emslie, K. R. 2012 Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84 (2), 10031011.10.1021/ac202578x
Song, H., Chen, D. L. & Ismagilov, R. F. 2006 Reactions in droplets in microfluidic channels angewandte. Angew. Chem. Intl Ed. 45 (44), 73367356.10.1002/anie.200601554
Style, R. W., Che, Y., Park, S. J., Weon, B. M., Je, J. H., Hyland, C., German, G. K., Power, M. P., Wilen, L. A., Wettlaufer, J. S. & Dufresne, E. R. 2013 Patterning droplets with durotaxis. Proc. Natl Acad. Sci. USA 110 (31), 1254112544.10.1073/pnas.1307122110
Tian, L., Martin, N., Bassindale, P. G. & Mann, S. 2016 Acoustic wave patterning. Nat. Commun. 7 (May), 110.
Yu, Y. S., Wang, Z. & Zhao, Y. P. 2012 Experimental and theoretical investigations of evaporation of sessile water droplet on hydrophobic surfaces. J. Colloid Interface Sci. 365 (1), 254259.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed