Skip to main content Accessibility help
×
Home

A uniform momentum zone–vortical fissure model of the turbulent boundary layer

  • Juan Carlos Cuevas Bautista (a1), Alireza Ebadi (a1), Christopher M. White (a1), Gregory P. Chini (a1) (a2) and Joseph C. Klewicki (a1) (a2) (a3)...

Abstract

Recent studies reveal that at large friction Reynolds number $\unicode[STIX]{x1D6FF}^{+}$ the inertially dominated region of the turbulent boundary layer is composed of large-scale zones of nearly uniform momentum segregated by narrow fissures of concentrated vorticity. Experiments show that, when scaled by the boundary-layer thickness, the fissure thickness is $\mathit{O}(1/\sqrt{\unicode[STIX]{x1D6FF}^{+}})$ , while the dimensional jump in streamwise velocity across each fissure scales in proportion to the friction velocity $u_{\unicode[STIX]{x1D70F}}$ . A simple model that exploits these essential elements of the turbulent boundary-layer structure at large $\unicode[STIX]{x1D6FF}^{+}$ is developed. First, a master wall-normal profile of streamwise velocity is constructed by placing a discrete number of fissures across the boundary layer. The number of fissures and their wall-normal locations follow scalings informed by analysis of the mean momentum equation. The fissures are then randomly displaced in the wall-normal direction, exchanging momentum as they move, to create an instantaneous velocity profile. This process is repeated to generate ensembles of streamwise velocity profiles from which statistical moments are computed. The modelled statistical profiles are shown to agree remarkably well with those acquired from direct numerical simulations of turbulent channel flow at large $\unicode[STIX]{x1D6FF}^{+}$ . In particular, the model robustly reproduces the empirically observed sub-Gaussian behaviour for the skewness and kurtosis profiles over a large range of input parameters.

Copyright

Corresponding author

Email address for correspondence: chris.white@unh.edu

References

Hide All
Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.
Chauhan, K., Philip, J., deSilva, C. M., Hutchins, N. & Marusic, I. 2014a The turbulent/nonturbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119151.
Chauhan, K., Philip, J. & Marusic, I. 2014b Scaling of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 751, 298328.
Chen, C.-H.P. & Blackwelder, R. F. 1978 Large-scale motion in a turbulent boundary layer: a study using temperature contamination. J. Fluid Mech. 89, 131.
Chini, G. P., Montemuro, B., White, C. M. & Klewicki, J. C. 2017 A self-sustaining process model of inertial layer dynamics in high Reynolds number turbulent wall flows. Phil. Trans. R. Soc. Lond. A 375, 20160090.
Corrsin, S. & Kistler, A. L.1955 Free-stream boundaries of turbulent flows. NACA Technical Note 1244.
Eisma, J., Westerweel, J., Ooms, G. & Elsinga, G. E. 2015 Interfaces and internal layers in a turbulent boundary layer. Phys. Fluids 27 (5), 55103.
Eyink, G. L. 2008 Turbulent flow in pipes and channels as cross-stream ‘inverse cascades’ of vorticity. Phys. Fluids 20, 125101.
Ishihara, T., Kaneda, Y. & Hunt, J. C. R. 2003 Thin shear layers in high Reynolds number turbulence – DNS results. Flow Turbul. Combust. 91, 895929.
Jimenez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335339.
Johansson, A. V. & Alfredsson, P. H. 1991 Evolution and dynamics of shear-layer structures in near-wall turbulence. J. Fluid Mech. 224, 579599.
Klewicki, J. 2010 Reynolds number dependence, scaling and dynamics of turbulent boundary layers. J. Fluids Engng 132, 094001.
Klewicki, J. C. 2013a On the singular nature of turbulent boundary layers. Procedia IUTAM 9, 6978.
Klewicki, J. C. & Falco, R. E. 1996 Spanwise vorticity structure in turbulent boundary layers. Intl J. Heat Fluid Flow 17, 363376.
Klewicki, J. C., Falco, R. E. & Foss, J. F. 1992 Some characteristics of the vortical motions in the outer region of turbulent boundary layers. J. Fluids Engng 114, 530536.
Klewicki, J., Fife, P. & Wei, T. 2009 On the logarithmic mean profile. J. Fluid Mech. 638, 7393.
Klewicki, J., Fife, P., Wei, T. & McMurtry, P. 2007 A physical model of the turbulent boundary layer consonant with mean momentum balance structure. Phil. Trans. R. Soc. Lond. A 365 (1852), 823839.
Klewicki, J. C. & Hirschi, C. R. 2004 Flow field properties local to near-wall shear layers in a low Reynolds number turbulent boundary layer. Phys. Fluids 16, 4163.
Klewicki, J. C., Metzger, M. M., Kelner, E. & Thurlow, E. 1995 Viscous sublayer flow visualizations at R 𝜃 ≃ 1 500 000. Phys. Fluids 7, 857.
Klewicki, J. & Oberlack, M. 2015 Finite Reynolds number properties of a turbulent channel flow similarity solution. Phys. Fluids 27 (9), 095110.
Klewicki, J., Philip, J., Marusic, I., Chauhan, K. & Morrill-Winter, C. 2014 Self-similarity in the inertial region of wall turbulence. Phys. Rev. E 90, 063015.
Klewicki, J. C 2013b A description of turbulent wall-flow vorticity consistent with mean dynamics. J. Fluid Mech. 737, 176204.
Klewicki, J. C. 2013c Self-similar mean dynamics in turbulent wall flows. J. Fluid Mech. 718, 596621.
Klewicki, J. C & Hill, R. B. 1998 Spatial structure of negative ∂u/∂y in a low R 𝜃 turbulent boundary layer. J. Fluids Engng 120 (4), 772777.
Kwon, Y. S., Philip, J., deSilva, C. M., Hutchins, N. & Monty, J. P. 2014 The quiescent core of turbulent channel flow. J. Fluid Mech. 751, 228254.
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re 𝜏 ≈ 5200. J. Fluid Mech. 774, 395415.
Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A. & Eyink, G. 2008 A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9, N31.
Marusic, I. & Adrian, R. J. 2010 The eddies and scales of wall turbulence. In Ten Chapters in Turbulence. Cambridge University Press.
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.
Meinhart, C. D. & Adrian, R. J. 1995 On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 7 (4), 694696.
Morrill-Winter, C. & Klewicki, J. 2013 Influences of boundary layer scale separation on the vorticity transport contribution to turbulent inertia. Phys. Fluids 25, 015108.
Morrill-Winter, C. T., Philip, J. & Klewicki, J. C. 2017 An invariant representation of mean inertia: theoretical basis for a log law in turbulent boundary layers. J. Fluid Mech. 813, 594617.
Morris, S., Stolpa, S., Slaboch, P. & Klewicki, J. 2007 Near-surface particle image velocimetry measurements in a transitionally rough-wall atmospheric boundary layer. J. Fluid Mech. 580, 319338.
Perlman, E., Burns, R., Li, Y. & Meneveau, C. 2007 Data exploration of turbulence simulations using a database cluster. In Proc. 2007 ACM/IEEE Conf. Supercomputing, p. 23. Association for Computing Machinery.
Perry, A. E. & Chong, M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.
Perry, A. E. & Marusic, I. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 361388.
Priyadarshana, P. J. A., Klewicki, J. C., Treat, S. & Foss, J. F. 2007 Statistical structure of turbulent-boundary-layer velocity-vorticity products at high and low Reynolds numbers. J. Fluid Mech. 570, 307346.
da Silva, C. B., Hunt, J. C. R., Eames, I. & Westerweel, J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.
de Silva, C. M., Hutchins, N. & Marusic, I. 2016 Uniform momentum zones in turbulent boundary layers. J. Fluid Mech. 786, 309331.
de Silva, C. M., Philip, J., Hutchins, N. & Marusic, I. 2017 Interfaces of uniform momentum zones in turbulent boundary layers. J. Fluid Mech. 820, 451478.
Sreenivasan, K. R. & Bershadskii, A. 2006 Finite-Reynolds-number effects in turbulence using logarithmic expansions.. J. Fluid Mech. 554, 477498.
Taylor, G. I. 1932 The transport of vorticity and heat through fluids in turbulent motion. Proc. R. Soc. Lond. A 135, 685702.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.
Wei, T., Fife, P., Klewicki, J. & McMurtry, P. 2005 Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J. Fluid Mech. 522, 303327.
Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R. 2009 Momentum and scalar transport at the turbulent–nonturbulent interface of a jet. J. Fluid Mech. 631, 199230.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

A uniform momentum zone–vortical fissure model of the turbulent boundary layer

  • Juan Carlos Cuevas Bautista (a1), Alireza Ebadi (a1), Christopher M. White (a1), Gregory P. Chini (a1) (a2) and Joseph C. Klewicki (a1) (a2) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.