Skip to main content Accessibility help
×
Home

Understanding evolution of vortex rings in viscous fluids

  • Aashay Tinaikar (a1), S. Advaith (a1) and S. Basu (a1) (a2)

Abstract

The evolution of vortex rings in isodensity and isoviscosity fluid has been studied analytically using a novel mathematical model. The model predicts the spatiotemporal variation in peak vorticity, circulation, vortex size and spacing based on instantaneous vortex parameters. This proposed model is quantitatively verified using experimental measurements. Experiments are conducted using high-speed particle image velocimetry (PIV) and laser induced fluorescence (LIF) techniques. Non-buoyant vortex rings are generated from a nozzle using a constant hydrostatic pressure tank. The vortex Reynolds number based on circulation $(\unicode[STIX]{x1D6E4}/\unicode[STIX]{x1D708})$ is varied in the range 100–1500 to account for a large range of operating conditions. Experimental results show good agreement with theoretical predictions. However, it is observed that neither Saffman’s thin-core model nor the thick-core equations could correctly explain vortex evolution for all initial conditions. Therefore, a transitional theory is framed using force balance equations which seamlessly integrate short- and long-time asymptotic theories. It is found that the parameter $A=(a/\unicode[STIX]{x1D70E})^{2}$ , where $a$ is the vortex half-spacing and $\unicode[STIX]{x1D70E}$ denotes the standard deviation of the Gaussian vorticity profile, governs the regime of vortex evolution. For higher values of $A$ , evolution follows short-time behaviour, while for $A=O(1)$ , long-time behaviour is prominent. Using this theory, many reported anomalous observations have been explained.

Copyright

Corresponding author

Email address for correspondence: tinaikar.aashay@gmail.com

References

Hide All
Advaith, S., Manu, K. V., Tinaikar, A., Chetia, U. K. & Basu, S. 2017 Interaction of vortex ring with a stratified finite thickness interface. Phys. Fluids 29 (9), 093602.
Archer, P. J., Thomas, T. G. & Coleman, G. N. 2008 Direct numerical simulation of vortex ring evolution from the laminar to the early turbulent regime. J. Fluid Mech. 598, 201226.
Arvidsson, P. M., Kovács, S. J., Töger, J., Borgquist, R., Heiberg, E., Carlsson, M. & Arheden, H. 2016 Vortex ring behavior provides the epigenetic blueprint for the human heart. Sci. Rep. 6, 22021.
Auerbach, D. 1988 Some open questions on the flow of circular vortex rings. Fluid Dyn. Res. 3 (1–4), 209213.
Barenblatt, G. I. 1996 Scaling, Self-similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics, vol. 14. Cambridge University Press.
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.
Bergdorf, M., Koumoutsakos, P. & Leonard, A. 2007 Direct numerical simulations of vortex rings at Re gamma = 7500. J. Fluid Mech. 581, 495505.
Bond, D. & Johari, H. 2010 Impact of buoyancy on vortex ring development in the near field. Exp. Fluids 48 (5), 737745.
Cantwell, B. & Rott, N. 1988 The decay of a viscous vortex pair. Phys. Fluids 31 (11), 32133224.
Cater, J., Soria, J. & Lim, T. T. 1998 The vorticity of a vortex ring core. In Proceedings of the 13th Australasian Fluid Mechanics Conference, Melbourne, Australia, pp. 58. Monash University Publishing.
Dabiri, J. O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41, 1733.
Dabiri, J. O. & Gharib, M. 2005 The role of optimal vortex formation in biological fluid transport. Proc. R. Soc. Lond. B 272 (1572), 15571560.
Dahm, W. J. A., Scheil, C. M. & Tryggvason, G. 1989 Dynamics of vortex interaction with a density interface. J. Fluid Mech. 205, 143.
Dengler, K. & Reeder, M. J. 1997 The effects of convection and baroclinicity on the motion of tropical-cyclone-like vortices. Q. J. R. Meteorol. Soc. 123 (539), 699725.
Didden, N. 1979 On the formation of vortex rings: rolling-up and production of circulation. Z. Angew. Math. Phys. 30 (1), 101116.
Dyson, F. W. 1893 The potential of an anchor ring. Part II. Phil. Trans. R. Soc. Lond. A 184, 10411106.
Dziedzic, M. & Leutheusser, H. J. 1996 An experimental study of viscous vortex rings. Exp. Fluids 21 (5), 315324.
Emanuel, K. 2005 Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436 (7051), 686688.
Fohl, T. 1967 Optimization of flow for forcing stack wastes to high altitudes. J. Air Pollut. Control Assoc. 17 (11), 730733.
Fraenkel, L. E. 1972 Examples of steady vortex rings of small cross-section in an ideal fluid. J. Fluid Mech. 51 (01), 119135.
Fukumoto, Y. & Kaplanski, F. 2008 Global time evolution of an axisymmetric vortex ring at low Reynolds numbers. Phys. Fluids 20 (5), 053103.
Fukumoto, Y. & Moffatt, H. K. 2000 Motion and expansion of a viscous vortex ring. Part 1. A higher-order asymptotic formula for the velocity. J. Fluid Mech. 417, 145.
Gharib, M., Rambod, E., Kheradvar, A., Sahn, D. J. & Dabiri, J. O. 2006 Optimal vortex formation as an index of cardiac health. Proc. Natl Acad. Sci. USA 103 (16), 63056308.
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.
Helmholtz, H. 1858 About integrals of hydrodynamic equations related with vortical motions. J. Reine Angew. Math. 55, 25.
Hill, F. M. 1975 A numerical study of the descent of a vortex pair in a stably stratified atmosphere. J. Fluid Mech. 71, 113.
Hill, M. J. M. 1894 On a spherical vortex. Proc. R. Soc. Lond. A 55 (331–335), 219224.
Jacquin, L., Fabre, D., Sipp, D., Theofilis, V. & Vollmers, H. 2003 Instability and unsteadiness of aircraft wake vortices. Aerosp. Sci. Technol. 7 (8), 577593.
Johari, H. & Fang, H. 1997 Horizontal vortex ring motion in linearly stratified media. Phys. Fluids 9 (9), 26052616.
Keane, R. D. & Adrian, R. J. 1990 Optimization of particle image velocimeters. I. Double pulsed systems. Meas. Sci. Technol. 1 (11), 1202.
Kelvin, L. 1867 On vortex atoms. Proc. R. Soc. Edin. 6, 94105.
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.
Lee, J. S., Park, S. J., Lee, J. H., Weon, B. M., Fezzaa, K. & Je, J. H. 2015 Origin and dynamics of vortex rings in drop splashing. Nature Commun. 6.
Linden, P. F. 1973 The interaction of a vortex ring with a sharp density interface: a model for turbulent entrainment. J. Fluid Mech. 60, 467480.
Lugt, H. J. 1983 Vortex Flow in Nature and Technology, vol. 1. p. 305. Wiley-Interscience.
Manu, K. V., Anand, P., Chetia, U. K. & Basu, S. 2015 Effects of instabilities and coherent structures on the performance of a thermocline based thermal energy storage. Appl. Therm. Engng 87, 768778.
Maxworthy, T. 1972 The structure and stability of vortex rings. J. Fluid Mech. 51 (01), 1532.
Maxworthy, T. 1977 Some experimental studies of vortex rings. J. Fluid Mech. 81 (03), 465495.
Moore, D. W. & Saffman, P. G. 1973 Axial flow in laminar trailing vortices. Proc. R. Soc. Lond. A 333, 491508.
Nomura, K. K., Tsutsui, H., Mahoney, D. & Rottman, J. W. 2006 Short-wavelength instability and decay of a vortex pair in a stratified fluid. J. Fluid Mech. 553, 283322.
Orlandi, P., Egermann, P. & Hopfinger, E. J. 1998 Vortex rings descending in a stratified fluid. Phys. Fluids 10 (11), 28192827.
Oseen, C. W. 1910 Stokes’ formula and a related theorem in hydrodynamics. Ark. Mat. Astron. Fys. 6, 20.
Oshima, Y. 1972 Motion of vortex rings in water. J. Phys. Soc. Japan 32 (4), 11251131.
Pullin, D. I. 1979 Vortex ring formation at tube and orifice openings. Phys. Fluids 22 (3), 401403.
Pullin, D. I. & Saffman, P. G. 1998 Vortex dynamics in turbulence. Annu. Rev. Fluid Mech. 30 (1), 3151.
Raffel, M., Willert, C. E., Wereley, S. & Kompenhans, J. 2013 Particle Image Velocimetry: A Practical Guide. Springer.
Rayfield, G. W. & Reif, F. 1964 Quantized vortex rings in superfluid helium. Phys. Rev. 136, A1194A1208.
Reynolds, O. 1876 On the resistance encountered by vortex rings and the relation between vortex rings and the stream-lines of a disc. Nature 14, 477479.
Saffman, P. G. 1970 The velocity of viscous vortex rings. Stud. Appl. Maths 49 (4), 371380.
Saffman, P. G. 1978 The number of waves on unstable vortex rings. J. Fluid Mech. 84 (04), 625639.
She, Z.-S., Jackson, E. & Orszag, S. A. 1990 Intermittant vortex structures in homogeneous isotropic turbulence. Nature 344 (6263), 226.
Smith, R. K., Montgomery, M. T. & Zhu, H. 2005 Buoyancy in tropical cyclones and other rapidly rotating atmospheric vortices. Dyn. Atmos. Oceans 40 (3), 189208.
Sommerfeld, A. 1950 Lectures on Theoretical Physics, Vol. II: Mechanics of Deformable Bodies. Academic.
Sonin, E. B. 2016 Dynamics of Quantised Vortices in Superfluids. Cambridge University Press.
Spalart, P. R. 1998 Airplane trailing vortices. Annu. Rev. Fluid Mech. 30, 107138.
Spedding, G. R., Hedenström, A. & Rosén, M. 2003 Quantitative studies of the wakes of freely flying birds in a low-turbulence wind tunnel. Exp. Fluids 34 (2), 291303.
Stanaway, S. K., Cantwell, B. J. & Spalart, P. R.1988 A numerical study of viscous vortex rings using a spectral method.
Sullivan, I. S., Niemela, J. J., Hershberger, R. E., Bolster, D. & Donnelly, R. J. 2008 Dynamics of thin vortex rings. J. Fluid Mech. 609, 319347.
Thomson, J. J. & Newall, H. F. 1885 On the formation of vortex rings by drops falling into liquids, and some allied phenomena. Proc. R. Soc. Lond. A 39, 417436.
Tsai, C.-Y. & Widnall, S. E. 1976 The stability of short waves on a straight vortex filament in a weak externally imposed strain field. J. Fluid Mech. 73 (04), 721733.
Turner, J. S. 1960 A comparison between buoyant vortex rings and vortex pairs. J. Fluid Mech. 7 (03), 419432.
Wakelin, S. L. & Riley, N. 1997 On the formation and propagation of vortex rings and pairs of vortex rings. J. Fluid Mech. 332, 121139.
Watanabe, S., Nakamichi, K., Jang, I.-S., Kazama, K., Hasegawa, S.-I. & Ishiwata, S. 1995 Generation of a vortex ring with high Reynolds number by an exploding wire in water. J. Phys. Soc. Japan 64 (10), 37483757.
Weigand, A. & Gharib, M. 1997 On the evolution of laminar vortex rings. Exp. Fluids 22 (6), 447457.
Weihs, D. 1973 Hydromechanics of fish schooling. Nature 241 (5387), 290291.
Witelski, T. P. & Bernoff, A. J. 1998 Self-similar asymptotics for linear and nonlinear diffusion equations. Stud. Appl. Maths 100 (2), 153193.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
UNKNOWN
Supplementary materials

Kurach et al supplementary material 1
Kurach et al supplementary material

 Unknown (423 KB)
423 KB

Understanding evolution of vortex rings in viscous fluids

  • Aashay Tinaikar (a1), S. Advaith (a1) and S. Basu (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed