Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-27T23:51:15.988Z Has data issue: false hasContentIssue false

Two-layer quasi-geostrophic singular vortices embedded in a regular flow. Part 2. Steady and unsteady drift of individual vortices on a beta-plane

Published online by Cambridge University Press:  25 July 2007

GREGORY REZNIK
Affiliation:
P. P. Shirshov Institute of Oceanology, 36 Nakhimousky prosp. Moscow 117997, Russia
ZIV KIZNER*
Affiliation:
Departments of Physics and Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel
*
Author to whom correspondence should be addressed: zinovyk@mail.biu.ac.il

Abstract

Drift of individual β-plane vortices confined to one layer of a two-layer fluid under the rigid-lid condition is considered. For this purpose, the theory of two-layer quasi-geostrophic singular vortices is employed. On a β-plane, any non-zonal displacement of a singular vortex results in the development of a regular flow. An individual singular β-plane vortex cannot be steady on its own: the vortex moves coexisting with a regular flow, be the drift steady or not. In this paper, both kinds of drift of a singular vortex are considered. A new steady exact solution is presented, a hybrid regular–singular modon. This hybrid modon consists of a dipole component and a circularly symmetric rider. The dipole is regular, and the rider is a superposition of the singular vortex and a regular circularly symmetric field. The unsteady drift of a singular vortex residing in one of the layers is considered under the condition that, at the initial instant, the regular field is absent. The development of barotropic and baroclinic regular β-gyres is examined. Whereas the barotropic and baroclinic modes of the singular vortex are comparable in magnitudes, the baroclinic β-gyres attenuate with time, making the trajectory of the vortex close to that of a barotropic monopole on a β-plane.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover, New York.Google Scholar
Flierl, G. R. 1987 Isolated eddy models in geophysics. Annu. Rev. Fluid Mech. 19, 493530.Google Scholar
Flierl, G. R., Larichev, V. D., McWilliams, J. C. & Reznik, G. M. 1980 The dynamics of baroclinic and barotropic solitary eddies. Dyn. Atmos. Oceans. 5, 141.CrossRefGoogle Scholar
Flierl, G. R., Stern, M. E. & Whitehead, J. A. 1983 The physical significance of modons: laboratory experiments and general integral constraints. Dyn. Atmos. Oceans. 7, 233263.Google Scholar
Gryanik, V. M. 1986 The singular geostrophic vortices on the beta-plane as a model for synoptic vortices. Oceanology 26, 126130.Google Scholar
Gryanik, V. M. 1988 Localized vortices – ‘vortex charges’ and ‘vortex filaments’ in a baroclinic, differentially rotating fluid. Izv. Atmos. Ocean. Phys. 24, 919926.Google Scholar
Gryanik, V. M., Borth, H. & Olbers, D. 2004 The theory of quasi-geostrophic von Kármán vortex streets in the two-layer fluids on a beta-plane. J. Fluid Mech. 505, 2357.CrossRefGoogle Scholar
Khvoles, R., Berson, D. & Kizner, Z. 2005 The structure and evolution of elliptical barotropic modons. J. Fluid Mech. 530, 130.CrossRefGoogle Scholar
Kizner, Z. I. 1984 Rossby solitons with axisymmetrical baroclinic modes. Dokl. USSR Acad. Sci. 275, 14951498.Google Scholar
Kizner, Z. I. 1986 a Intensity of synoptic eddies and the quasi-geostrophic approximation. Oceanology 26, 2835.Google Scholar
Kizner, Z. I. 1986 b Strongly nonlinear solitary Rossby waves. Oceanology 26, 382388.Google Scholar
Kizner, Z. I. 1988 On the theory of intrathermocline eddies. Dokl. USSR Acad. Sci. 300, 453457.Google Scholar
Kizner, Z. I. 1997 Solitary Rossby waves with baroclinic modes. J. Mar. Res. 55, 671685.Google Scholar
Kizner, Z. 2006 Stability and transitions of hetonic quartets and baroclinic modons. Phys. Fluids 18, 056601/12.Google Scholar
Kizner, Z. & Berson, D. 2000 Emergence of modons from collapsing vortex structures on the β-plane. J. Mar. Res. 58, 375403.Google Scholar
Kizner, Z., Berson, D. & Khvoles, R. 2002 Baroclinic modon equilibria on the beta-plane: stability and transitions. J. Fluid Mech. 468, 239270.Google Scholar
Kizner, Z., Berson, D. & Khvoles, R. 2003 a Non-circular baroclinic modons: constructing stationary solutions. J. Fluid Mech. 489, 199228.Google Scholar
Kizner, Z., Berson, D., Reznik, G. & Sutyrin, G. 2003 b The theory of the beta-plane baroclinic topographic modons. Geophys Astrophys. Fluid. Dyn. 97, 175211.CrossRefGoogle Scholar
Larichev, V. D. & Reznik, G. M. 1976 a On the two-dimensional solitary Rossby waves. Dokl. Akad. Nauk SSSR 231, 10771079.Google Scholar
Larichev, V. D. & Reznik, G. M. 1976 b Strongly nonlinear two-dimensional solitary Rossby waves. Oceanology 16, 961967.Google Scholar
McWilliams, J. C. & Flierl, G. R. 1979 On the evolution of isolated, nonlinear vortices J. Phys. Oceanogr. 9, 1155.2.0.CO;2>CrossRefGoogle Scholar
Mied, R. P. & Lindemann, G. J. 1982 The birth and evolution of eastward-propagating modons. J. Phys. Oceanogr. 12, 213230.Google Scholar
Nycander, J. 1988 New stationary vortex solutions of the Hasegawa – Mima equation. J. Plasma Phys. 39, 418428.Google Scholar
Reznik, G. M. 1986 Point vortices on a β-plane and Rossby solitary waves. Oceanology 26, 165173.Google Scholar
Reznik, G. M. 1987 On the structure and dynamics of a two-dimensional Rossby soliton. Oceanology 27, 716720.Google Scholar
Reznik, G. M. 1992 Dynamics of singular vortices on a β-plane. J. Fluid Mech. 240, 405432.CrossRefGoogle Scholar
Reznik, G. M. & Dewar, W. 1994 An analytical theory of distributed axisymmetric barotropic vortices on the beta-plane. J. Fluid Mech. 269, 301321.CrossRefGoogle Scholar
Reznik, G. & Kizner, Z. 2007 Two-layer quasi-geostrophic singular vortices embedded in a regular flow. Part 1. Invariants of motion and stability of vortex pairs J. Fluid. Mech. 584, 185202.CrossRefGoogle Scholar
Reznik, G. M., Grimshaw, R. & Sriskandarajah, H. J. 1997 On basic mechanisms governing two-layer vortices on a beta-plane. Geoph. Astrophys. Fluid. Dyn. 86, 142.Google Scholar
Reznik, G. M., Grimshaw, R. & Benilov, E. 2000 On the long-term evolution of an intense localized divergent vortex on the beta-plane. J. Fluid. Mech. 422, 249280.Google Scholar
Sutyrin, G. G. & Flierl, G. R. 1994 Intense vortex motion on the beta-plane: development of the beta-gyres J. Atmos Sci. 51, 773790.Google Scholar
Sutyrin, G. G., Hesthaven, J. S., Lynov, J. P. & Rasmussen, J. 1994 Dynamical properties of vortical structures on the beta-plane. J. Fluid Mech. 268, 103131.Google Scholar
Tribbia, J. J. 1984 Modons in spherical geometry. Geophys. Astrophys. Fluid Dyn. 30, 131168.CrossRefGoogle Scholar
Verkley, W. T. M. 1984 The construction of barotropic modons on a sphere. J. Atmos. Sci. 41, 24922504.Google Scholar