Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T11:01:53.454Z Has data issue: false hasContentIssue false

Turbulent-boundary-layer development in an adverse pressure gradient after an interaction with a normal shock wave

Published online by Cambridge University Press:  20 April 2006

W. H. Schofield
Affiliation:
Aeronautical Research Laboratories, Melbourne, Victoria, Australia

Abstract

An experimental study has been made of the development of a turbulent boundary layer in an adverse pressure gradient after an interaction with a normal shock wave that was strong enough to separate the boundary layer locally. The pressure gradient applied to the layer was additional to the pressure gradients induced by the shock wave. Measurements were taken for several hundreds of layer thicknesses downstream of the interaction. To separate the effects of shock wave and pressure gradient a second set of observations were made in a reference layer that developed in the same adverse pressure gradient without first interacting with a normal shock wave. It is shown that the adverse pressure gradient impressed on the flow downstream of the shock has a major effect on the structure of the interaction region and the growth of the layer through it. Consequently, existing results for interactions without a postshock pressure gradient should not be used as a model for predicting practical flows, which typically have strong pressure gradients applied downstream of the shock wave. It is also shown that the shock wave produces a pronounced stabilizing effect on the downstream flow, which can be attributed to the streamwise vortices shed into the flow from the separated region formed by the shock wave. The implications of this result for nominally two-dimensional flow situations and to flows involving weak interactions without local separations are discussed.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alstatt, M. C. 1977 AEDC Rep. AEDC-TR-77-47.
Brown, A. C., Nawrocki, H. F. & Paley, P. N. 1968 J. Aircraft 5, 221.
Chen, C. P., Sajben, M. & Krontil, J. C. 1979 AIAA J. 17, 1976.
East, L. F. 1976 RAE TM 1666.
Green, J. E. 1969 RAE TR 69098, p. 7.
Hayakawa, K., Smits, A. J. & Bogdonoff, S. M. 1983 In Structure of Complex Turbulent Shear Flow (ed. R. Dumas & L. Fulachier), p. 279. Springer.
Hayakawa, K. & Squire, L. C. 1982 J. Fluid Mech. 122, 369.
Hunt, J. C. R., Abell, C. J., Peterka, J. A. & Woo, H. 1977 J. Fluid Mech. 86, 179.
Inger, G. R. 1975 Final Rep. to Office of Naval Research; Contract NOO14-75-C-0456.
Kamal, W. A. & Livesey, J. L. 1977 In Proc. Symp. on Turbulent Shear Flows, University Park, Pennsylvania State Univ. Pennsylvania, p. 12.1.
Kamal, W. A., Odukwe, A. O. & Livesey, J. L. 1974 In Proc. 5th Australasian Conf. on Hydraulics and Fluid Mechanics, Christchurch, p. 98.
Kline, S. J., Bardina, J. G. & Strawn, R. C. 1983 AIAA J. 21, 68.
Kline, S. J., Cantwell, B. J. & Lilley, G. M. (eds.) 1982a Proc. AFOSR-HTMM-Stanford Conf. on Complex Flows, vol. 1. Stanford University.
Kline, S. J., Cantwell, B. J. & Lilley, G. M. (eds.) 1982b Proc. AFOSR-HTMM-Stanford Conf. on Complex Flows, vol. 11. Stanford University.
Kline, S. J., Cantwell, B. J. & Lilley, G. M. (eds.) 1982c Proc. AFOSR-HTMM-Stanford Conf. on Complex Flows, vol. 111. Stanford University.
Kline, S. J. & McClintock, F. A. 1953 Mech. Engng 75, 3.
Kooi, J. W. 1975 In Proc. AGARD Symp. on Flow Separation; AGARD CPP-168. Also NLR-MP-78013U (1978).
Leblanc, R. & Geothals, R. 1975 Nasa TTF 16698.
Livesey, J. L. & Odukwe, A. O. 1974 Proc. Inst. Mech. Engrs 188, 607.
Meier, H. U. & Rotta, J. C. 1971 AIAA J. 9, 2149.
Muck, K. C. & Smits, A. J. 1983 In Proc. 4th Symp. on Turbulent Shear Flows, Karlsruhe. Springer-Verlag.
Padova, C., Falk, T. J. & Wittliff, C. E. 1980 AIAA Paper 80-0158.
Perry, A. E. & Fairlie, B. D. 1974 Adv. Geophys. B18, p. 299. Academic.
Rose, W. C. & Childs, M. E. 1974 J. Fluid Mech. 65, 177.
Sajben, M. & Krontil, J. C. 1981 AIAA J. 19, 1386.
Schofield, W. H. 1975 ARL Mech. Engng Note 359.
Schofield, W. H. 1983 ARL Mech. Engng Rep. 161.
Seddon, J. 1967 ARC R & M 3502.
Settles, G. S., Vas, I. E. & Bogdonoff, S. M. 1976 AIAA J. 14, 1709.
Settles, G. S., Williams, D. R., Baca, B. K. & Bogdonoff, S. M. 1982 AIAA J. 20, 60.
Simpson, R. L., Chew, Y. T. & Shivaprasad, B. G. 1981 J. Fluid Mech. 113, 23.
Vidal, R. J. & Kooi, J. W. 1976 NLR Rep. AC-76-02.
Vidal, R. J., Wittliff, C. E., Catlin, P. A. & Sheen, B. H. 1973 AIAA Paper-73-661.