Skip to main content Accessibility help

Turbulent drag reduction by compliant lubricating layer

  • Alessio Roccon (a1) (a2), Francesco Zonta (a1) and Alfredo Soldati (a1) (a2)


We propose a physically sound explanation for the drag reduction mechanism in a lubricated channel, a flow configuration in which an interface separates a thin layer of less-viscous fluid (viscosity $\unicode[STIX]{x1D702}_{1}$ ) from a main layer of a more-viscous fluid (viscosity $\unicode[STIX]{x1D702}_{2}$ ). To single out the effect of surface tension, we focus initially on two fluids having the same density and the same viscosity ( $\unicode[STIX]{x1D706}=\unicode[STIX]{x1D702}_{1}/\unicode[STIX]{x1D702}_{2}=1$ ), and we lower the viscosity of the lubricating layer down to $\unicode[STIX]{x1D706}=\unicode[STIX]{x1D702}_{1}/\unicode[STIX]{x1D702}_{2}=0.25$ , which corresponds to a physically realizable experimental set-up consisting of light oil and water. A database comprising original direct numerical simulations of two-phase flow channel turbulence is used to study the physical mechanisms driving drag reduction, which we report between 20 and 30 percent. The maximum drag reduction occurs when the two fluids have the same viscosity ( $\unicode[STIX]{x1D706}=1$ ), and corresponds to the relaminarization of the lubricating layer. Decreasing the viscosity of the lubricating layer ( $\unicode[STIX]{x1D706}<1$ ) induces a marginally decreased drag reduction, but also helps sustaining strong turbulence in the lubricating layer. This led us to infer two different mechanisms for the two drag-reduced systems, each of which is ultimately controlled by the outcome of the competition between viscous, inertial and surface tension forces.


Corresponding author

Email address for correspondence:


Hide All
Ahmadi, S., Roccon, A., Zonta, F. & Soldati, A. 2018a Turbulent drag reduction by a near wall surface tension active interface. Flow Turbul. Combust. 100 (4), 979993.10.1007/s10494-018-9918-2
Ahmadi, S., Roccon, A., Zonta, F. & Soldati, A. 2018b Turbulent drag reduction in channel flow with viscosity stratified fluids. Comput. Fluids 176, 260265.10.1016/j.compfluid.2016.11.007
Badalassi, V. E., Ceniceros, H. D. & Banerjee, S. 2003 Computation of multiphase systems with phase field models. J. Comput. Phys. 190 (2), 371397.10.1016/S0021-9991(03)00280-8
Bai, R., Kelkar, K. & Joseph, D. D. 1996 Direct simulation of interfacial waves in a high-viscosity-ratio and axisymmetric coreannular flow. J. Fluid Mech. 327, 134.10.1017/S0022112096008440
Bannwart, A. C. 2001 Modeling aspects of oil–water core–annular flows. J. Petrol. Sci. Engng 32 (2–4), 127143.10.1016/S0920-4105(01)00155-3
Brücker, C. 2015 Evidence of rare backflow and skin-friction critical points in near-wall turbulence using micropillar imaging. Phys. Fluids 27 (3), 031705.10.1063/1.4916768
Ding, H., Spelt, P. D. M. & Shu, C. 2007 Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226 (2), 20782095.10.1016/
Ghosh, S., Mandal, T. K. & Das, P. K. 2009 Review of oil water core annular flow. Renew. Sust. Energy Rev. 13, 19571965.10.1016/j.rser.2008.09.034
Hu, Z., Morfey, C. L. & Sandham, N. D. 2006 Wall pressure and shear stress spectra from direct simulations of channel flow. AIAA J. 44 (7), 15411549.10.2514/1.17638
Isaac, J. D. & Speed, J. B.1904 Method of piping fluids. US Patent 759,374.
Jacqmin, D. 1999 Calculation of two-phase Navier–Stokes flows using phase-field modelling. J. Comput. Phys. 155 (1), 96127.10.1006/jcph.1999.6332
Jiménez, J. 2013 Near-wall turbulence. Phys. Fluids 25, 101302.10.1063/1.4824988
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.10.1017/S0022112091002033
Joseph, D. D., Bai, R., Chen, K. P. & Renardy, Y. Y. 1997 Core-annular flows. Annu. Rev. Fluid Mech. 29 (1), 6590.10.1146/annurev.fluid.29.1.65
Joseph, D. D., Renardy, M. & Renardy, Y. 1984 Instability of the flow of two immiscible liquids with different viscosities in a pipe. J. Fluid Mech. 141, 309317.10.1017/S0022112084000860
Joseph, D. D. & Renardy, Y. Y. 1993 Fundamentals of Two-fluid Dynamics: Lubricated Transport, Drops, and Miscible Liquids. Springer.
Kim, J. 2012 Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12 (3), 613661.10.4208/cicp.301110.040811a
Lenaers, P., Li, Q., Brethouwer, G., Schlatter, P. & Örlü, R. 2012 Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence. Phys. Fluids. 24 (3), 035110.10.1063/1.3696304
Looman, M. D.1916 Method of conveying oil. US Patent 1,192,438.
Oliemans, R. V. A. & Ooms, G. 1986 Multiphase Science and Technology (ed. Hewitt, G. F., Delhaye, J. M. & Zuber, N.), vol. 2, pp. 427476. Springer.10.1007/978-3-662-01657-2_6
Pecnik, R. & Patel, A. 2017 Scaling and modelling of turbulence in variable property channel flows. J. Fluid Mech. 823.10.1017/jfm.2017.348
Roccon, A., De Paoli, M., Zonta, F. & Soldati, A. 2017 Viscosity-modulated breakup and coalescence of large drops in bounded turbulence. Phys. Rev. Fluids 2, 083603.10.1103/PhysRevFluids.2.083603
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.10.1017/S002211200100667X
Soldati, A. & Banerjee, S. 1998 Turbulence modification by large-scale organized electrohydrodynamic flows. Phys. Fluids 10 (7), 17421756.10.1063/1.869691
Soligo, G., Roccon, A. & Soldati, A. 2019 Coalescence of surfactant-laden drops by phase field method. J. Comput. Phys. 376, 12921311.10.1016/
Zonta, F., Marchioli, C. & Soldati, A. 2012 Modulation of turbulence in forced convection by temperature-dependent viscosity. J. Fluid Mech. 697, 150174.10.1017/jfm.2012.67
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Turbulent drag reduction by compliant lubricating layer

  • Alessio Roccon (a1) (a2), Francesco Zonta (a1) and Alfredo Soldati (a1) (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.