Balmforth, N. J., Frigaard, I. A. & Ovarlez, G.
2014
Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech.
46, 121–146.
Bentrad, H., Esmael, A., Nouar, C., Lefevre, A. & Ait-Messaoudene, N.
2017
Energy growth in Hagen–Poiseuille flow of Herschel–Bulkley fluid. J. Non-Newtonian Fluid Mech.
241, 43–59.
Beris, A. N. & Dimitropoulos, C. D.
1999
Pseudospectral simulation of turbulent viscoelastic channel flow. Comput. Meth. Appl. Mech. Engng
180 (3–4), 365–392.
Berman, N. S.
1978
Drag reduction by polymers. Annu. Rev. Fluid Mech.
10 (1), 47–64.
Breugem, W. P., Boersma, B. J. & Uittenbogaard, R. E.
2006
The influence of wall permeability on turbulent channel flow. J. Fluid Mech.
562, 35–72.
Cheddadi, I., Saramito, P., Dollet, B., Raufaste, C. & Graner, F.
2011
Understanding and predicting viscous, elastic, plastic flows. Eur. Phys. J. E
34 (1), 1.
Crochet, M. J. & Walters, K.
1983
Numerical methods in non-Newtonian fluid mechanics. Annu. Rev. Fluid Mech.
15 (1), 241–260.
De Vita, F., Rosti, M. E., Izbassarov, D., Duffo, L., Tammisola, O., Hormozi, S. & Brandt, L.
2018
Elastoviscoplastic flow in porous media. J. Non-Newtonian Fluid Mech.
258, 10–21.
Den Toonder, J. M. J., Hulsen, M. A., Kuiken, G. D. C. & Nieuwstadt, F. T. M.
1997
Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments. J. Fluid Mech.
337, 193–231.
Dollet, B. & Graner, F.
2007
Two-dimensional flow of foam around a circular obstacle: local measurements of elasticity, plasticity and flow. J. Fluid Mech.
585, 181–211.
Dubief, Y., Terrapon, V. E., White, C. M., Shaqfeh, E. S. G., Moin, P. & Lele, S. K.
2005
New answers on the interaction between polymers and vortices in turbulent flows. Flow Turbul. Combust.
74 (4), 311–329.
Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S. G., Moin, P. & Lele, S. K.
2004
On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech.
514, 271–280.
Escudier, M. P., Nickson, A. K. & Poole, R. J.
2009
Turbulent flow of viscoelastic shear-thinning liquids through a rectangular duct: quantification of turbulence anisotropy. J. Non-Newtonian Fluid Mech.
160 (1), 2–10.
Escudier, M. P., Poole, R. J., Presti, F., Dales, C., Nouar, C., Desaubry, C., Graham, L. & Pullum, L.
2005
Observations of asymmetrical flow behaviour in transitional pipe flow of yield-stress and other shear-thinning liquids. J. Non-Newtonian Fluid Mech.
127 (2–3), 143–155.
Escudier, M. P. & Presti, F.
1996
Pipe flow of a thixotropic liquid. J. Non-Newtonian Fluid Mech.
62 (2–3), 291–306.
Escudier, M. P., Presti, F. & Smith, S.
1999
Drag reduction in the turbulent pipe flow of polymers. J. Non-Newtonian Fluid Mech.
81 (3), 197–213.
Escudier, P. & Smith, S.
2001
Fully developed turbulent flow of non-Newtonian liquids through a square duct. Proc. R. Soc. Lond. A
457, 911–936.
Founargiotakis, K., Kelessidis, V. C. & Maglione, R.
2008
Laminar, transitional and turbulent flow of Herschel–Bulkley fluids in concentric annulus. Can. J. Chem. Engng
86 (4), 676–683.
Fraggedakis, D., Dimakopoulos, Y. & Tsamopoulos, J.
2016
Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids. Soft Matt.
12 (24), 5378–5401.
Frigaard, I. A., Howison, S. D. & Sobey, I. J.
1994
On the stability of Poiseuille flow of a Bingham fluid. J. Fluid Mech.
263, 133–150.
García-Mayoral, R. & Jiménez, J.
2011
Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech.
678, 317–347.
Gordon, R. J. & Schowalter, W. R.
1972
Anisotropic fluid theory: a different approach to the dumbbell theory of dilute polymer solutions. Trans. Soc. Rheol.
16 (1), 79–97.
Guang, R., Rudman, M., Chryss, A., Slatter, P. & Bhattacharya, S.
2011
A DNS investigation of the effect of yield stress for turbulent non-Newtonian suspension flow in open channels. Particul. Sci. Technol.
29 (3), 209–228.
Guzel, B., Frigaard, I. & Martinez, D. M.
2009
Predicting laminar–turbulent transition in Poiseuille pipe flow for non-Newtonian fluids. Chem. Engng Sci.
64 (2), 254–264.
Hanks, R. W.
1963
The laminar-turbulent transition for flow in pipes, concentric annuli, and parallel plates. AIChE J.
9 (1), 45–48.
Hanks, R. W.
1967
On the flow of Bingham plastic slurries in pipes and between parallel plates. Soc. Petrol. Engng J.
7 (04), 342–346.
Hanks, R. W. & Dadia, B. H.
1971
Theoretical analysis of the turbulent flow of non-Newtonian slurries in pipes. AIChE J.
17 (3), 554–557.
Hormozi, S. & Frigaard, I. A.
2012
Nonlinear stability of a visco-plastically lubricated viscoelastic fluid flow. J. Non-Newtonian Fluid Mech.
169, 61–73.
Izbassarov, D., Rosti, M. E., Niazi, A. M., Sarabian, M., Hormozi, S., Brandt, L. & Tammisola, O.
2018
Computational modeling of multiphase viscoelastic and elastoviscoplastic flows. Intl J. Numer. Meth. Fluids (accepted, https://doi.org/10.1002/fld.4678).
Kanaris, N., Kassinos, S. C. & Alexandrou, A. N.
2015
On the transition to turbulence of a viscoplastic fluid past a confined cylinder: a numerical study. Intl J. Heat Fluid Flow
55, 65–75.
Kim, J. & Moin, P.
1985
Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys.
59 (2), 308–323.
Kim, J., Moin, P. & Moser, R.
1987
Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech.
177, 133–166.
Logan, S. E.
1972
Laser velocimeter measurement of Reynolds stress and turbulence in dilute polymer solutions. AIAA J.
10 (7), 962–964.
Maleki, A. & Hormozi, S.
2018
Submerged jet shearing of visco-plastic sludge. J. Non-Newtonian Fluid Mech.
252, 19–27
Martinie, L., Buggisch, H. & Willenbacher, N.
2013
Apparent elongational yield stress of soft matter. J. Rheol.
57 (2), 627–646.
Metivier, C., Nouar, C. & Brancher, J. P.
2005
Linear stability involving the Bingham model when the yield stress approaches zero. Phys. Fluids
17 (10), 104106.
Metivier, C., Nouar, C. & Brancher, J. P.
2010
Weakly nonlinear dynamics of thermoconvective instability involving viscoplastic fluids. J. Fluid Mech.
660, 316–353.
Metzner, A. B. & Reed, J. C.
1955
Flow of non-Newtonian fluids – correlation of the laminar, transition, and turbulent-flow regions. AIChE J.
1 (4), 434–440.
Min, T., Yoo, J. Y. & Choi, H.
2001
Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows. J. Non-Newtonian Fluid Mech.
100 (1), 27–47.
Moyers-Gonzalez, M. A., Frigaard, I. A. & Nouar, C.
2004
Nonlinear stability of a visco-plastically lubricated viscous shear flow. J. Fluid Mech.
506, 117–146.
Nouar, C. & Bottaro, A.
2010
Stability of the flow of a Bingham fluid in a channel: eigenvalue sensitivity, minimal defects and scaling laws of transition. J. Fluid Mech.
642, 349–372.
Nouar, C. & Frigaard, I. A.
2001
Nonlinear stability of Poiseuille flow of a Bingham fluid: theoretical results and comparison with phenomenological criteria. J. Non-Newtonian Fluid Mech.
100 (1–3), 127–149.
Nouar, C., Kabouya, N., Dusek, J. & Mamou, M.
2007
Modal and non-modal linear stability of the plane Bingham–Poiseuille flow. J. Fluid Mech.
577, 211–239.
Orlandi, P. & Leonardi, S.
2008
Direct numerical simulation of three-dimensional turbulent rough channels: parameterization and flow physics. J. Fluid Mech.
606, 399–415.
Owolabi, B. E., Dennis, D. J. C. & Poole, R. J.
2017
Turbulent drag reduction by polymer additives in parallel-shear flows. J. Fluid Mech.
827, R4.
Picano, F., Breugem, W. P. & Brandt, L.
2015
Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech.
764, 463–487.
Pinho, F. T. & Whitelaw, J. H.
1990
Flow of non-Newtonian fluids in a pipe. J. Non-Newtonian Fluid Mech.
34 (2), 129–144.
Poole, R. J.
2012
The Deborah and Weissenberg numbers. Rheol. Bull.
53, 32–39.
Pope, S. B.
2001
Turbulent Flows. Cambridge University Press.
Putz, A. M. V., Burghelea, T. I., Frigaard, I. A. & Martinez, D. M.
2008
Settling of an isolated spherical particle in a yield stress shear thinning fluid. Phys. Fluids
20 (3), 033102.
Rosti, M. E. & Brandt, L.
2017
Numerical simulation of turbulent channel flow over a viscous hyper-elastic wall. J. Fluid Mech.
830, 708–735.
Rosti, M. E., Brandt, L. & Mitra, D.
2018a
Rheology of suspensions of viscoelastic spheres: deformability as an effective volume fraction. Phys. Rev. Fluids
3 (1), 012301(R).
Rosti, M. E., Brandt, L. & Pinelli, A.
2018b
Turbulent channel flow over an anisotropic porous wall – drag increase and reduction. J. Fluid Mech.
842, 381–394.
Rosti, M. E., Cortelezzi, L. & Quadrio, M.
2015
Direct numerical simulation of turbulent channel flow over porous walls. J. Fluid Mech.
784, 396–442.
Rudman, M. & Blackburn, H. M.
2006
Direct numerical simulation of turbulent non-Newtonian flow using a spectral element method. Appl. Math. Model.
30 (11), 1229–1248.
Rudman, M., Blackburn, H. M., Graham, L. J. W. & Pullum, L.
2004
Turbulent pipe flow of shear-thinning fluids. J. Non-Newtonian Fluid Mech.
118 (1), 33–48.
Ryan, N. W. & Johnson, M. M.
1959
Transistion from laminar to turbulent flow in pipes. AIChE J.
5 (4), 433–435.
Saramito, P.
2007
A new constitutive equation for elastoviscoplastic fluid flows. J. Non-Newtonian Fluid Mech.
145 (1), 1–14.
Saramito, P.
2009
A new elastoviscoplastic model based on the Herschel–Bulkley viscoplastic model. J. Non-Newtonian Fluid Mech.
158 (1), 154–161.
Saramito, P.
2016
Complex Fluids. Springer.
Saramito, P. & Wachs, A.
2016
Progress in numerical simulation of yield stress fluid flows. Rheol. Acta
79, 1–20.
Shahmardi, A., Zade, S., Ardekani, M. N., Poole, R. J., Lundell, F., Rosti, M. E. & Brandt, L.
2018
Turbulent duct flow with polymers. J. Fluid Mech. (under review).
Shaukat, A., Kaushal, M., Sharma, A. & Joshi, Y. M.
2012
Shear mediated elongational flow and yielding in soft glassy materials. Soft Matt.
8 (39), 10107–10114.
Shu, C. W.
2009
High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev.
51 (1), 82–126.
Sugiyama, K., Ii, S., Takeuchi, S., Takagi, S. & Matsumoto, Y.
2011
A full Eulerian finite difference approach for solving fluid–structure coupling problems. J. Comput. Phys.
230 (3), 596–627.
Warholic, M. D., Massah, H. & Hanratty, T. J.
1999
Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids
27 (5), 461–472.
White, C. M. & Mungal, M. G.
2008
Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech.
40, 235–256.
Xi, L. & Graham, M. D.
2010
Active and hibernating turbulence in minimal channel flow of Newtonian and polymeric fluids. Phys. Rev. Lett.
104 (21), 218301.