## References

Andereck, C. D., Liu, S. S. & Swinney, H. L.
1986
Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech.
164, 155–183.

Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. & Succi, S.
1993
Extended self-similarity in turbulent flows. Phys. Rev. E
48, R29–R32.

Blum, D. B., Kunwar, S. B., Johnson, J. & Voth, G. A.
2010
Effects of nonuniversal large scales on conditional structure functions in turbulence. Phys. Fluids
22, 015107.

Chandrasekhar, S.
1981
Hydrodynamic and Hydromagnetic Stability. Dover.

Chien, C.-C., Blum, D. B. & Voth, G. A.
2013
Effects of fluctuating energy input on the small scales in turbulence. J. Fluid Mech.
737, 527–551.

Eckhardt, B., Grossmann, S. & Lohse, D.
2007
Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech.
581, 221–250.

Fardin, M. A., Perge, C. & Taberlet, N.
2014
The hydrogen atom of fluid dynamics – introduction to the Taylor–Couette flow for soft matter scientists. Soft Matt.
10, 3523–3535.

Frisch, U.
1995
Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.

van Gils, D. P. M., Huisman, S. G., Bruggert, G.-W., Sun, C. & Lohse, D.
2011
Torque scaling in turbulent Taylor–Couette flow with co- and counterrotating cylinders. Phys. Rev. Lett.
106, 024502.

van Gils, D. P. M., Huisman, S. G., Grossmann, S., Sun, C. & Lohse, D.
2012
Optimal Taylor–Couette turbulence. J. Fluid Mech.
706, 118–149.

Grossmann, S. & Lohse, D.
2011
Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids
23, 045108.

Grossmann, S., Lohse, D. & Sun, C.
2016
High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech.
48, 53–80.

Huisman, S. G., van Gils, D. P. M., Grossmann, S., Sun, C. & Lohse, D.
2012
Ultimate turbulent Taylor–Couette flow. Phys. Rev. Lett.
108, 024501.

Huisman, S. G., Lohse, D. & Sun, C.
2013
Statistics of turbulent fluctuations in counter-rotating Taylor–Couette flows. Phys. Rev. E
88, 063001.

Huisman, S. G., van der Veen, R. C. A., Bruggert, G.-W., Lohse, D. & Sun, C.
2015
The boiling Twente Taylor–Couette (BTTC) facility: temperature controlled turbulent flow between independently rotating, coaxial cylinders. Rev. Sci. Instrum.
86, 065108.

Huisman, S. G., van der Veen, R. C. A., Sun, C. & Lohse, D.
2014
Multiple states in highly turbulent Taylor–Couette flow. Nat. Commun.
5, 3820.

Lewis, G. S. & Swinney, H. L.
1999
Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette–Taylor flow. Phys. Rev. E
59, 5457–5467.

Martínez Mercado, J., Prakash, V. N., Tagawa, Y., Sun, C. & Lohse, D.
2012
Lagrangian statistics of light particles in turbulence. Phys. Fluids
24, 055106.

Ni, R., Huang, S.-D. & Xia, K.-Q.
2011
Local energy dissipation rate balances local heat flux in the center of turbulent thermal convection. Phys. Rev. Lett.
107, 174503.

Ostilla-Mónico, R., van der Poel, E. P., Verzicco, R., Grossmann, S. & Lohse, D.
2014
Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys. Fluids
26, 015114.

Ostilla-Mónico, R., van der Poel, E. P., Verzicco, R., Grossmann, S. & Lohse, D.
2014
Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech.
761, 1–26.

Paoletti, M. S. & Lathrop, D. P.
2011
Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett.
106, 024501.

Pope, S. B.
2000
Turbulent Flows. Cambridge University Press.

Shang, X.-D., Tong, P. & Xia, K.-Q.
2008
Scaling of the local convective heat flux in turbulent Rayleigh–Bernard convection. Phys. Rev. Lett.
100, 244503.

She, Z.-S. & Leveque, E.
1994
Universal scaling laws in fully developed turbulence. Phys. Rev. Lett.
72, 336–339.

de Silva, C. M., Marusic, I., Woodcock, J. D. & Meneveau, C.
2015
Scaling of second- and higher-order structure functions in turbulent boundary layers. J. Fluid Mech.
769, 654–686.

Smith, G. P. & Townsend, A. A.
1982
Turbulent Couette flow between concentric cylinders at large Taylor numbers. J. Fluid Mech.
123, 187–217.

Sreenivasan, K. R.
1995
On the universality of the Kolmogorov constant. Phys. Fluids
7, 2778–2784.

Taylor, G. I.
1923
Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A
223, 289–343.

van der Veen, R. C. A., Huisman, S. G., Dung, O.-Y., Tang, H. L., Sun, C. & Lohse, D.
2016a
Exploring the phase space of multiple states in highly turbulent Taylor–Couette flow. Phys. Rev. Fluids
1, 024401.

van der Veen, R. C. A., Huisman, S. G., Merbold, S., Harlander, U., Egbers, C., Lohse, D. & Sun, C.
2016b
Taylor–Couette turbulence at radius ratio 𝜂 = 0. 5: scaling, flow structures and plumes. J. Fluid Mech.
799, 334–351.

Voth, G. A., La Porta, A., Crawford, A. M., Alexander, J. & Bodenschatz, E.
2002
Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech.
469, 121–160.

Zhou, Q., Sun, C. & Xia, K.-Q.
2008
Experimental investigation of homogeneity, isotropy, and circulation of the velocity field in buoyancy-driven turbulence. J. Fluid Mech.
598, 361–372.

Zhu, X., Verzicco, R. & Lohse, D.
2017
Disentangling the origins of torque enhancement through wall roughness in Taylor–Couette turbulence. J. Fluid Mech.
812, 279–293.

Zimmermann, R., Xu, H., Gasteuil, Y., Bourgoin, M., Volk, R., Pinton, J.-F. & Bodenschatz, E.
2010
The lagrangian exploration module: an apparatus for the study of statistically homogeneous and isotropic turbulence. Rev. Sci. Instrum.
81, 055112.