Skip to main content Accessibility help
×
Home

Turbulence spectra in smooth- and rough-wall pipe flow at extreme Reynolds numbers

  • B. J. Rosenberg (a1), M. Hultmark (a1), M. Vallikivi (a1), S. C. C. Bailey (a2) and A. J. Smits (a1) (a3)...

Abstract

Well-resolved streamwise velocity spectra are reported for smooth- and rough-wall turbulent pipe flow over a large range of Reynolds numbers. The turbulence structure far from the wall is seen to be unaffected by the roughness, in accordance with Townsend’s Reynolds number similarity hypothesis. Moreover, the energy spectra within the turbulent wall region follow the classical inner and outer scaling behaviour. While an overlap region between the two scalings and the associated ${ k}_{x}^{- 1} $ law are observed near ${R}^{+ } \approx 3000$ , the ${ k}_{x}^{- 1} $ behaviour is obfuscated at higher Reynolds numbers due to the evolving energy content of the large scales (the very-large-scale motions, or VLSMs). We apply a semi-empirical correction (del Álamo & Jiménez, J. Fluid Mech., vol. 640, 2009, pp. 5–26) to the experimental data to estimate how Taylor’s frozen field hypothesis distorts the pseudo-spatial spectra inferred from time-resolved measurements. While the correction tends to suppress the long wavelength peak in the logarithmic layer spectrum, the peak nonetheless appears to be a robust feature of pipe flow at high Reynolds number. The inertial subrange develops around ${R}^{+ } \gt 2000$ where the characteristic ${ k}_{x}^{- 5/ 3} $ region is evident, which, for high Reynolds numbers, persists in the wake and logarithmic regions. In the logarithmic region, the streamwise wavelength of the VLSM peak scales with distance from the wall, which is in contrast to boundary layers, where the superstructures have been shown to scale with boundary layer thickness throughout the entire shear layer. Moreover, the similarity in the streamwise wavelength scaling of the large- and very-large-scale motions supports the notion that the two are physically interdependent.

Copyright

Corresponding author

Email address for correspondence: rosenber@princeton.edu

References

Hide All
Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.
del Álamo, J. C. & Jiménez, J. 2003 Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15, 4144.
del Álamo, J. C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.
del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.
Allen, J. J., Shockling, M. A., Kunkel, G. J. & Smits, A. J. 2007 Turbulent flow in smooth and rough pipes. Phil. Trans. R. Soc. Lond. A 365, 699714.
Bailey, S. C. C., Kunkel, G. J., Hultmark, M., Vallikivi, M., Hill, J. P., Meyer, K. A., Tsay, C., Arnold, C. B. & Smits, A. J. 2010 Turbulence measurements using a nanoscale thermal anemometry probe. J. Fluid Mech. 663, 160179.
Bailey, S. C. C. & Smits, A. J. 2010 Experimental investigation of the structure of large- and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 651, 339356.
Balakumar, B. J. & Adrian, R. J. 2007 Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. A 365, 665681.
Guala, M., Hommena, S. E. & Adrian, R. J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.
Hultmark, M. 2012 A theory for the streamwise turbulent fluctuations in high Reynolds number pipe flow. J. Fluid Mech. 707, 575584.
Hultmark, M., Bailey, S. C. C. & Smits, A. J. 2010 Scaling of near-wall turbulence in pipe flow. J. Fluid Mech. 649, 103113.
Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J. 2012 Turbulent pipe flow at extreme Reynolds numbers. Phys. Rev. Lett. 108, doi:10.1103/PhysRevLett.108.094501.
Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J. 2013 Logarithmic scaling of turbulence in smooth- and rough-walled pipe flow at extreme Reynolds number. J. Fluid Mech. 728, 376395.
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.
Hutchins, N., Nickels, T. B., Marusic, I. & Chong, M. S. 2009 Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103136.
Katul, G. G., Chu, C. R., Parlange, M. B., Albertson, J. D. & Ortenburger, T. A. 1995 Low-wavenumber spectral characteristics of velocity and temperature in the atmospheric surface layer. J. Geophys. Res. 100 (D7) 1424314255.
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.
Kunkel, G. J., Allen, J. J. & Smits, A. J. 2007 Further support for Townsend’s Reynolds number similarity hypothesis in high Reynolds number rough-wall pipe flow. Phys. Fluids 19 (5), 055109.
Langelandsvik, L. I., Kunkel, G. J. & Smits, A. J. 2007 Flow in a commercial steel pipe. J. Fluid Mech. 595, 323339.
Ligrani, P. M. & Bradshaw, P. 1987 Subminiature hot-wire sensors: development and use. J. Phys. E 20, 323332.
Marusic, I. & Kunkel, G. J. 2003 Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys. Fluids 15 (8), 24612464.
Marusic, I., Mathis, R. & Hutchins, N. 2010 High Reynolds number effects in wall turbulence. Intl J. Heat Fluid Flow 31, 418428.
Marusic, I., Uddin, A. K. M. & Perry, A. E. 1997 Similarity law for the streamwise turbulence intensity in zero-pressure-gradient turbulent boundary layers. Phys. Fluids 9 (12), 37183726.
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.
Monty, J. P. & Chong, M. S. 2009 Turbulent channel flow: comparison of streamwise velocity data from experiments and direct numerical simulation. J. Fluid Mech. 633, 461474.
Monty, J. P., Hutchins, N., Ng, H. C. H., Marusic, I. & Chong, M. S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.
Monty, J. P., Stewart, J. A., Williams, R. C. & Chong, M. S. 2007 Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147156.
Morrison, J. F., McKeon, B. J., Jiang, W. & Smits, A. J. 2004 Scaling of the streamwise velocity component in turbulent pipe flow. J. Fluid Mech. 508, 99131.
Nickels, T. B., Marusic, I., Hafez, S. & Chong, M. S. 2005 Evidence of the ${ k}_{1}^{- 1} $ law in a high-Reynolds-number turbulent boundary layer. Phys. Rev. Lett. 95, 074501.
Nickels, T. B., Marusic, I., Hafez, S., Hutchins, N. & Chong, M. S. 2007 Some predictions of the attached eddy model for a high Reynolds number boundary layer. Phil. Trans. R. Soc. A 365, 807822.
Perry, A. E. & Abell, C. J. 1977 Asymptotic similarity of turbulence structures in smooth- and rough-walled pipes. J. Fluid Mech. 79, 785799.
Perry, A. E. & Chong, M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217.
Perry, A. E., Henbest, S. & Chong, M. S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.
Perry, A. E. & Li, J. D. 1990 Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers. J. Fluid Mech. 218, 405438.
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.
Smits, A. J., McKeon, B. J. & Marusic, I. 2011a High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.
Smits, A. J., Monty, J., Hultmark, M., Bailey, S. C. C., Hutchins, M. & Marusic, I. 2011b Spatial resolution correction for turbulence measurements. J. Fluid Mech. 676, 4153.
Taylor, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. 164 (919), 476490.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Vallikivi, M., Hultmark, M., Bailey, S. C. C. & Smits, A. J. 2011 Turbulence measurements in pipe flow using a nano-scale thermal anemometry probe. Exp. Fluids 51 (6), 15211527.
Wu, X., Baltzer, J. R. & Adrian, R. J. 2012 Direct numerical simulation of a $30R$ long turbulent pipe flow at ${R}^{+ } = 685$ : large- and very-large-scale motions. J. Fluid Mech. 698, 235281.
Zagarola, M. V. 1996 Mean-flow scaling of turbulent pipe flow. PhD thesis, Princeton University.
Zagarola, M. V. & Smits, A. J. 1998 Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 3379.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Turbulence spectra in smooth- and rough-wall pipe flow at extreme Reynolds numbers

  • B. J. Rosenberg (a1), M. Hultmark (a1), M. Vallikivi (a1), S. C. C. Bailey (a2) and A. J. Smits (a1) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.