Skip to main content Accessibility help
×
Home

Transport of a dilute active suspension in pressure-driven channel flow

  • Barath Ezhilan (a1) and David Saintillan (a1)

Abstract

Confined suspensions of active particles show peculiar dynamics characterized by wall accumulation, as well as upstream swimming, centreline depletion and shear trapping when a pressure-driven flow is imposed. We use theory and numerical simulations to investigate the effects of confinement and non-uniform shear on the dynamics of a dilute suspension of Brownian active swimmers by incorporating a detailed treatment of boundary conditions within a simple kinetic model where the configuration of the suspension is described using a conservation equation for the probability distribution function of particle positions and orientations, and where particle–particle and particle–wall hydrodynamic interactions are neglected. Based on this model, we first investigate the effects of confinement in the absence of flow, in which case the dynamics is governed by a swimming Péclet number, or ratio of the persistence length of particle trajectories over the channel width, and a second swimmer-specific parameter whose inverse measures the strength of propulsion. In the limit of weak and strong propulsion, asymptotic expressions for the full distribution function are derived. For finite propulsion, analytical expressions for the concentration and polarization profiles are also obtained using a truncated moment expansion of the distribution function. In agreement with experimental observations, the existence of a concentration/polarization boundary layer in wide channels is reported and characterized, suggesting that wall accumulation in active suspensions is primarily a kinematic effect that does not require hydrodynamic interactions. Next, we show that application of a pressure-driven Poiseuille flow leads to net upstream swimming of the particles relative to the flow, and an analytical expression for the mean upstream velocity is derived in the weak-flow limit. In stronger imposed flows, we also predict the formation of a depletion layer near the channel centreline, due to cross-streamline migration of the swimming particles towards high-shear regions where they become trapped, and an asymptotic analysis in the strong-flow limit is used to obtain a scale for the depletion layer thickness and to rationalize the non-monotonic dependence of the intensity of depletion upon flow rate. Our theoretical predictions are all shown to be in excellent agreement with finite-volume numerical simulations of the kinetic model, and are also supported by recent experiments on bacterial suspensions in microfluidic devices.

Copyright

Corresponding author

Email address for correspondence: dstn@ucsd.edu

References

Hide All
Altshuler, E., Miño, G., Pérez-Penichet, C., del Río, L., Lindner, A., Rousselet, A. & Clément, E. 2013 Flow-controlled densification and anomalous dispersion of E. coli through a constriction. Soft Matt. 9, 18641870.
Baskaran, A. & Marchetti, M. C. 2009 Statistical mechanics and hydrodynamics of bacterial suspensions. Proc. Natl Acad. Sci. USA 106, 1556715572.
Bearon, R. N., Hazel, A. L. & Thorn, G. J. 2011 The spatial distribution of gyrotactic swimming micro-organisms in laminar flow fields. J. Fluid Mech. 680, 602635.
Berke, A. P., Turner, L., Berg, H. C. & Lauga, E. 2008 Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102.
Bretherton, F. P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14, 284304.
Cellia, J. P., Turner, B. S., Afdhal, N. H., Keates, S., Ghiran, I., Kelly, C. P., Ewoldt, R. H., McKinley, G. H., So, P., Erramilli, S. & Bansil, R. 2009 Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc. Natl Acad. Sci. USA 106, 1432114326.
Chilukuri, S., Collins, C. H. & Underhill, P. T. 2014 Impact of external flow on the dynamics of swimming microorganisms near surfaces. J. Phys.: Condens. Matt. 26, 115101.
Costanzo, A., Di Leonardo, R., Ruocco, G. & Angelani, L. 2012 Transport of self-propelling bacteria in micro-channel flow. J. Phys.: Condens. Matt. 24, 065101.
Denissenko, P., Kanstler, V., Smith, D. J. & Kirkman-Brown, J. 2012 Human spermatozoa migration in micro channels reveals boundary-following navigation. Proc. Natl Acad. Sci. USA 109, 80078010.
Di Leonardo, R., Angelani, L., Dell’Arciprete, D., Ruocco, G., Iebba, V., Schippa, S., Conte, M. P., Mecarini, F., De Angelis, F. & Di Fabrizio, E. 2010 Bacterial ratchet motors. Proc. Natl Acad. Sci. USA 107, 95419545.
Doi, M. & Edwards, S. F. 1986 The Theory of Polymer Dynamics. Oxford University Press.
Drescher, K., Dunkel, J., Cisneros, L. H., Ganguly, S. & Goldstein, R. E. 2011 Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering. Proc. Natl Acad. Sci. USA 108, 1094010945.
Edwards, S. A. & Yeomans, J. M. 2009 Spontaneous flow states in active nematics: a unified picture. Europhys. Lett. 85, 18008.
Elgeti, J. & Gompper, G. 2013 Wall accumulation of self-propelled spheres. Europhys. Lett. 101, 48003.
Elgeti, J. & Gompper, G. 2015 Run-and-tumble dynamics of self-propelled particles in confinement. Europhys. Lett. 109, 58003.
Ezhilan, B., Pahlavan, A. A. & Saintillan, D. 2012 Chaotic dynamics and oxygen transport in thin films of aerotactic bacteria. Phys. Fluids 24, 091701.
Fauci, L. J. & McDonald, A. 1995 Sperm motility in the presence of boundaries. Bull. Math. Biol. 57, 679699.
Ferziger, J. H. & Perić, M. 2002 Computational Methods for Fluid Dynamics. Springer.
Forest, M. G., Wang, Q. & Zhou, R. 2013 Kinetic theory and simulations of active polar liquid crystalline polymers. Soft Matt. 9, 52075222.
Fürthauer, S., Neef, M., Grill, S. W., Kruse, K. & Jülicher, F. 2012 The Taylor–Couette motor: spontaneous flows of active polar fluids between two coaxial cylinders. New J. Phys. 14, 023001.
Gachelin, J., Rousselet, A., Lindner, A. & Clement, E. 2014 Collective motion in an active suspension of E. coli bacteria. New J. Phys. 16, 025003.
Galajda, P., Keymer, J., Chaikin, P. & Austin, R. 2007 A wall of funnel concentrates swimming bacteria. J. Bacteriol. 189, 87048707.
Garcia, M., Berti, S., Peyla, P. & Rafaï, S. 2011 Random walk of a swimmer in a low-Reynolds-number medium. Phys. Rev. E 83, 035301.
Gibbs, J. G., Kothari, S., Saintillan, D. & Zhao, Y.-P. 2011 Geometrically designing the kinematic behavior of catalytic nanomotors. Nano Lett. 11, 25432550.
Hernández-Ortiz, J. P., Stoltz, C. G. & Graham, M. D. 2005 Transport and collective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett. 95, 204501.
Hernández-Ortiz, J. P., Underhill, P. T. & Graham, M. D. 2009 Dynamics of confined suspensions of swimming particles. J. Phys.: Condens. Matt. 21, 204107.
Hill, J., Kalkanci, O., McMurry, J. L. & Koser, H. 2007 Hydrodynamic surface interactions enable E. coli to seek efficient routes to swim upstream. Phys. Rev. Lett. 98, 068101.
Hulme, S. E., DiLuzio, W. R., Shevkoplyas, S. S., Turner, L., Mayer, M., Berg, H. C. & Whitesides, G. M. 2008 Using ratchets and sorters to fractionate motile cells of E. coli by length. Lab on a Chip 8, 18881895.
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.
Kaiser, A., Peshkov, A., Sokolov, A., ten Hagen, B., Löwen, H. & Aranson, I. S. 2014 Transport powered by bacterial turbulence. Phys. Rev. Lett. 112, 158101.
Kaiser, A., Wensink, H. H. & Löwen, H. 2012 How to capture active particles. Phys. Rev. Lett. 108, 268307.
Kantsler, V., Dunkel, J., Blayney, M. & Goldstein, R. E. 2014 Rheotaxis facilitates upstream navigation of mammalian sperm cells. eLife 3, 02403.
Kantsler, V., Dunkel, J., Polin, M. & Goldstein, R. E. 2013 Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc. Natl Acad. Sci. USA 110, 11871192.
Kasyap, T. V. & Koch, D. 2014 Instability of an inhomogeneous bacterial suspension subjected to a chemo-attractant gradient. J. Fluid Mech. 741, 619657.
Kaya, T. & Koser, H. 2009 Characterization of hydrodynamic surface interactions of E. coli cell bodies in shear flow. Phys. Rev. Lett. 103, 138103.
Kaya, T. & Koser, H. 2012 Direct upstream motility in E. coli . Biophys. J. 102, 15141523.
Kim, M. Y., Drescher, K., Park, O. S., Bassler, B. & Stone, H. A. 2014 Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers. New J. Phys. 16, 065024.
Koumakis, N., Lepore, A., Maggi, C. & Di Leonardo, R. 2013 Targeted delivery of colloids by swimming bacteria. Nature Commun. 4, 2588.
Krochak, P. J., Olson, J. A. & Martinez, D. M. 2010 Near-wall estimates of the concentration and orientation distribution of a semi-dilute rigid fibre suspension in Poiseuille flow. J. Fluid Mech. 653, 431462.
Lambert, G., Liao, D. & Austin, R. H. 2010 Collective escape of chemotactic swimmers through microscopic ratchets. Phys. Rev. Lett. 104, 168102.
Lauga, E., DiLuzio, W. R., Whitesides, G. M. & Stone, H. A. 2006 Swimming in circles: Motion of bacteria near solid boundaries. Biophys. J. 90, 400412.
Lecuyer, S., Rusconi, R., Chen, Y., Forsyth, A., Vlamakis, H., Kolter, R. & Stone, H. A. 2011 Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa . Biophys. J. 100, 341350.
Lee, C. F. 2013 Active particles under confinement: aggregation at the wall and gradient formation inside a channel. New J. Phys. 15, 055007.
Li, G. & Ardekani, A. M. 2014 Hydrodynamic interaction of microswimmers near a wall. Phys. Rev. E 90, 013010.
Li, G., Bensson, J., Nisimova, L., Munger, D., Mahautmr, P., Tang, J. X., Maxey, M. R. & Brun, Y. V. 2011 Accumulation of swimming bacteria near a solid surface. Phys. Rev. E 84, 041932.
Li, G. & Tang, J. X. 2009 Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Phys. Rev. Lett. 103, 078101.
Lu, L. & Walker, W. A. 2001 Pathologic and physiologic interactions of bacteria with the gastrointestinal epithelium. Am. J. Clin. Nutr. 73, 11241130.
Lushi, E., Wioland, H. & Goldstein, R. E. 2014 Fluid flows created by swimming bacteria drive self-organization in confined suspensions. Proc. Natl Acad. Sci. USA 111, 97339738.
Marchetti, M. C., Joanny, J. F., Ramaswamy, S., Liverpool, T. B., Prost, J., Rao, M. & Aditi Simha, R. 2013 Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 11431189.
Marenduzzo, D., Orlandini, E., Cates, M. & Yeomans, J. 2007a Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid lattice Boltzmann simulations. Phys. Rev. E 76, 031921.
Marenduzzo, D., Orlandini, E. & Yeomans, J. 2007b Hydrodynamics and rheology of active liquid crystals: a numerical investigation. Phys. Rev. Lett. 98, 118102.
Nash, R. W., Adhikari, R., Tailleur, J. & Cates, M. E. 2010 Run-and-tumble particles with hydrodynamics: sedimentation, trapping, and upstream swimming. Phys. Rev. Lett. 104, 258101.
Nitsche, J. M. & Brenner, H. 1990 On the formulation of boundary conditions for rigid non spherical Brownian particles near solid walls: Applications to orientation-specific reactions with immobilized enzymes. J. Colloid Interface Sci. 138, 2141.
Ravnik, M. & Yeomans, J. M. 2013 Confined active nematic flow in cylindrical capillaries. Phys. Rev. Lett. 110, 026001.
Riedel, I. H., Kruse, K. & Howard, J. 2005 A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309, 300303.
Rothschild, L. 1963 Non-random distribution of bull spermatozoa in a drop of sperm suspension. Nature 198, 12211222.
Rusconi, R., Guasto, J. S. & Stocker, R. 2014 Bacterial transport suppressed by fluid shear. Nature Phys. 10, 212217.
Rusconi, R., Lecuyer, S., Guglielmini, L. & Stone, H. A. 2010 Laminar flow around corners triggers the formation of biofilm streamers. J. R. Soc. Interface 7, 12931299.
Saintillan, D. & Shelley, M. J. 2008a Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum particle simulations. Phys. Rev. Lett. 100, 178103.
Saintillan, D. & Shelley, M. J. 2008b Instabilities, pattern formation, and mixing in active suspensions. Phys. Fluids 20, 123304.
Saintillan, D. & Shelley, M. J. 2013 Active suspensions and their nonlinear models. C. R. Physique 14, 497517.
Schiek, R. L. & Shaqfeh, E. S. G. 1995 A nonlocal theory for stress in bound, Brownian suspensions of slender, rigid fibres. J. Fluid Mech. 296, 271324.
Sokolov, A., Apodaca, M. M., Grzybowski, B. A. & Aranson, I. S. 2010 Swimming bacteria power microscopic gears. Proc. Natl Acad. Sci. USA 107, 969974.
Spagnolie, S. E. & Lauga, E. 2012 Hydrodynamics of self-propulsion near boundaries: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147.
Suarez, S. S. & Pacey, A. A. 2006 Sperm navigation in the female reproductive tract. Human Reproduction Update 12, 2337.
Subramanian, G. & Koch, D. L. 2009 Critical bacterial concentration for the onset of collective swimming. J. Fluid Mech. 632, 359400.
Takagi, D., Braunschweig, A., Zhang, J. & Shelley, M. J. 2013 Dispersion of self-propelled rods undergoing fluctuation-driven flips. Phys. Rev. Lett. 110, 038301.
Takagi, D., Palacci, J., Braunschweig, A., Shelley, M. & Zhang, J. 2014 Hydrodynamic capture of microswimmers into sphere-bound orbits. Soft Matt. 10, 17841789.
Voituriez, R., Joanny, J. F. & Prost, J. 2005 Spontaneous flow transition in active polar gels. Europhys. Lett. 70, 404410.
Wioland, H., Woodhouse, F. G., Dunkel, J., Kessler, J. O. & Goldstein, R. E. 2013 Confinement stabilizes a bacterial suspension into a spiral vortex. Phys. Rev. Lett. 110, 268102.
Woolley, D. M. 2003 Motility of spermatozoa at surfaces. Reproduction 126, 259270.
Zöttl, A. & Stark, H. 2012 Nonlinear dynamics of a microswimmer in Poiseuille flow. Phys. Rev. Lett. 108, 218104.
Zöttl, A. & Stark, H. 2013 Periodic and quasiperiodic motion of an elongated microswimmer in Poiseuille flow. Eur. Phys. J. E 36, 4.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Transport of a dilute active suspension in pressure-driven channel flow

  • Barath Ezhilan (a1) and David Saintillan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed