Skip to main content Accessibility help
×
Home

Transport and instability in driven two-dimensional magnetohydrodynamic flows

  • Sam Durston (a1) and Andrew D. Gilbert (a1)

Abstract

This paper concerns the generation of large-scale flows in forced two-dimensional systems. A Kolmogorov flow with a sinusoidal profile in one direction (driven by a body force) is known to become unstable to a large-scale flow in the perpendicular direction at a critical Reynolds number. This can occur in the presence of a ${\it\beta}$ -effect and has important implications for flows observed in geophysical and astrophysical systems. It has recently been termed ‘zonostrophic instability’ and studied in a variety of settings, both numerically and analytically. The goal of the present paper is to determine the effect of magnetic field on such instabilities using the quasi-linear approximation, in which the full fluid system is decoupled into a mean flow and waves of one scale. The waves are driven externally by a given random body force and move on a fast time scale, while their stress on the mean flow causes this to evolve on a slow time scale. Spatial scale separation between waves and mean flow is also assumed, to allow analytical progress. The paper first discusses purely hydrodynamic transport of vorticity including zonostrophic instability, the effect of uniform background shear and calculation of equilibrium profiles in which the effective viscosity varies spatially, through the mean flow. After brief consideration of passive scalar transport or equivalently kinematic magnetic field evolution, the paper then proceeds to study the full magnetohydrodynamic system and to determine effective diffusivities and other transport coefficients using a mixture of analytical and numerical methods. This leads to results on the effect of magnetic field, background shear and ${\it\beta}$ -effect on zonostrophic instability and magnetically driven instabilities.

Copyright

Corresponding author

Email address for correspondence: A.D.Gilbert@exeter.ac.uk

References

Hide All
Aubert, J. 2005 Steady zonal flows in spherical shell dynamos. J. Fluid Mech. 542, 5367.
Bajer, K., Bassom, A. P. & Gilbert, A. D. 2001 Accelerated diffusion in the centre of a vortex. J. Fluid Mech. 437, 395411.
Bakas, N. A. & Iouannou, P. J. 2011 Structural stability theory of two-dimensional fluid flow under stochastic forcing. J. Fluid Mech. 682, 332361.
Bakas, N. A. & Iouannou, P. J. 2013 On the mechanism underlying the spontaneous emergence of barotropic zonal jets. J. Atmos. Sci. 70, 22512271.
Bakas, N. A. & Iouannou, P. J. 2014 A theory for the emergence of coherent structures in beta-plane turbulence. J. Fluid Mech. 740, 312341.
Bedrossian, J. & Masmoudi, N. 2015 Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. In Publications Mathématiques de l’IHÉS, pp. 1106. Springer.
Berloff, P., Kamenkovich, I. & Pedlosky, J. 2009 A mechanism of multiple zonal jets in the oceans. J. Fluid Mech. 628, 395425.
Bernoff, A. J. & Lingevitch, J. F. 1994 Rapid relaxation of an axisymmetric vortex. Phys. Fluids 6, 37173723.
Bouchet, F. & Morita, H. 2010 Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations. Physica D 239, 948966.
Bouchet, F., Nardini, C. & Tangarife, T. 2013 Kinetic theory of jet dynamics in the stochastic barotropic and 2d Navier–Stokes equations. J. Stat. Phys. 153, 572625.
Bouchet, F., Nardini, C. & Tangarife, T. 2014 Stochastic averaging, large deviations and random transitions for the dynamics of 2D and geostrophic turbulent vortices. Fluid. Dyn. Res. 46, 061416.
Chechkin, A. V. 1999 Negative magnetic viscosity in two dimensions. J. Expl Theor. Phys. 89, 677688.
Constantinou, N. C., Farrell, B. F. & Iouannou, P. J. 2014 Emergence and equilibration of jets in beta-plane turbulence: applications of stochastic structural stability theory. J. Atmos. Sci. 71, 18181842.
Diamond, P. H., Itoh, S.-I., Itoh, K. & Silvers, L. J. 2007 Beta-plane MHD turbulence and dissipation in the solar tachocline. In The Solar Tachocline (ed. Hughes, D. W., Rosner, R. & Weiss, N. O.), pp. 213239. Cambridge University Press.
Dritschel, D. G. & McIntyre, M. E. 2008 Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855874.
Dritschel, D. G. & Scott, R. K. 2011 Jet sharpening by turbulent mixing. Proc. R. Soc. Lond. A 369, 754770.
Dunkerton, T. J. & Scott, R. K. 2008 A barotropic model of the angular momentum conserving potential vorticity staircase in spherical geometry. J. Atmos. Sci. 65, 11051135.
Durston, S.2015 Zonal jets and shear: transport properties of two-dimensional fluid flows. PhD thesis, University of Exeter, UK.
Farrell, B. F. & Iouannou, P. J. 2003 Structural stability of turbulent jets. J. Atmos. Sci. 60, 21012118.
Farrell, B. F. & Iouannou, P. J. 2006 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64, 36523665.
Farrell, B. F. & Iouannou, P. J. 2008 Formation of jets by baroclinic turbulence. J. Atmos. Sci. 65, 33533375.
Frisch, U., Legras, B. & Villone, B. 1996 Large-scale Kolmogorov flow on the beta-plane and resonant wave interactions. Physica D 94, 3656.
Galperin, B., Sukoriansky, S., Dikovskaya, N., Read, P. L., Yamazaki, Y. H. & Wordsworth, R. 2006 Anisotropic turbulence and zonal jets in rotating flows with a 𝛽 effect. Nonlinear Process. Geophys. 13, 8398.
Galperin, B., Young, R. M. B., Sukoriansky, S., Dikovskaya, N., Read, P. L., Lancaster, A. J. & Armstrong, D. 2014 Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter. Icarus 229, 295320.
Heimpel, M. A., Aurnou, J. & Wicht, J. 2005 Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193196.
Hsu, P.-C. & Diamond, P. H. 2015 Zonal flow formation in the presence of ambient mean shear. Phys. Plasmas 22, 022306.
Hughes, D. W., Rosner, R. & Weiss, N. O. 2007 The Solar Tachocline. Cambridge University Press.
Keating, S. R. & Diamond, P. H. 2008 Turbulent resistivity in wavy two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 595, 173202.
Kim, E.-J. 2007 The role of magnetic shear in flow shear suppression. Phys. Plasmas 18, 084504.
Kim, E.-J. & MacGregor, K. B. 2003 Gravity wave driven flows in the solar tachocline. II: stationary flows. Astrophys. J. 588, 645654.
Leprovost, N. & Kim, E.-J. 2008a Analytical theory of forced rotating sheared turbulence: the perpendicular case. Phys. Rev. E 78, 016301.
Leprovost, N. & Kim, E.-J. 2008b Analytical theory of forced rotating sheared turbulence: the parallel case. Phys. Rev. E 78, 036319.
Leprovost, N. & Kim, E.-J. 2009 Turbulent transport and dynamo in sheared MHD turbulence with a non-uniform magnetic field. Phys. Rev. E 80, 026302.
Manfroi, A. J. & Young, W. R. 1998 Slow evolution of zonal jets on the beta plane. J. Atmos. Sci. 56, 784800.
Manfroi, A. J. & Young, W. R. 2002 Stability of 𝛽-plane Kolmogorov flow. Physica D 162, 208232.
Meshalkin, L. D. & Sinai, I. G. 1961 Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous fluid. Appl. Math. Mech. 25, 17001705.
Morin, V. & Dormy, E. 2004 Time dependent 𝛽-convection in rapidly rotating spherical shells. Phys. Fluids 16, 16031609.
Newton, A., Kim, E.-J. & Liu, H.-L. 2013 On the self-organizing process of large scale shear flows. Phys. Plasmas 20, 092306.
Olver, F. J. W., Lozier, D. W., Boisvert, R. F. & Clark, C. W. 2010 NIST Handbook of Mathematical Functions. Cambridge University Press.
Parker, J. B. & Krommes, J. A. 2013 Zonal flow as pattern formation. Phys. Plasmas 20, 100703.
Parker, J. B. & Krommes, J. A. 2014 Generation of zonal flows through symmetry breaking of statistical homogeneity. New J. Phys. 16, 035006.
Read, P. L., Jacoby, T. N. L., Rogberg, P. H. T., Wordsworth, R. D., Yamazaki, Y. H., Miki-Yamazaki, K., Young, R. M. B., Sommeria, J., Didelle, H. & Viboud, S. 2015 An experimental study of multiple zonal jet formation in rotating, thermally driven convective flows on a topographic beta-plane. Phys. Fluids 27, 085111.
Read, P. L., Yamazaki, Y. H., Lewis, S. R., Williams, P. D., Wordsworth, R., Miki-Yamazaki, K., Sommeria, J., Didelle, H. & Fincham, A. M. 2007 Dynamics of convectively driven banded jets in the laboratory. J. Atmos. Sci. 64, 40314052.
Rhines, P. B. 1975 Waves and turbulence on the beta-plane. J. Fluid Mech. 69, 417441.
Rotvig, J. & Jones, C. A. 2006 Multiple jets and bursting in the rapidly rotating convecting two-dimensional annulus model with nearly plane-parallel boundaries. J. Fluid Mech. 567, 117140.
Scott, R. K. & Dritschel, D. G. 2012 The structure of zonal jets in geostrophic turbulence. J. Fluid Mech. 711, 576598.
Scott, R. K. & Polvani, L. M. 2007 Forced-dissipative shalllow-water turbulence on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci. 64, 31583176.
Srinivasan, K. & Young, W. R. 2012 Zonostrophic instability. J. Atmos. Sci. 69, 16331656.
Srinivasan, K. & Young, W. R. 2014 Reynolds stress and eddy diffusivity of 𝛽-plane shear flows. J. Atmos. Sci. 71, 21692185.
Sukoriansky, S., Galperin, B. & Chekhlov, A. 1999 Large scale drag representation in simulations of two-dimensional turbulence. Phys. Fluids 11, 30433053.
Tobias, S. M., Dagon, K. & Marston, J. B. 2011 Astrophysical fluid dynamics via direct statistical simulation. Astrophys. J. 727, 127.
Tobias, S. M., Hughes, D. W. & Diamond, P. H. 2007 𝛽-plane magnetohydrodynamic turbulence in the solar tachocline. Astrophys. J. 667, L113116.
Vallis, G. K. & Maltrud, M. E. 1993 Generation of mean flow and jets on a beta plane and over topography. J. Phys. Oceanogr. 23, 13461362.
Weiss, N. O. 1966 The expulsion of magnetic flux by eddies. Proc. R. Soc. Lond. A 293, 310328.
Yadav, R. K., Gastine, T., Christensen, U. R. & Reiners, A. 2015 Formation of starspots in self-consistent global dynamo models: polar spots on cool stars. Astron. Astrophys. 573, A68.
Zhang, K. & Jones, C. A. 1997 The effect of hyperviscosity on geodynamo models. Geophys. Res. Lett. 24, 28692872.
Zheligovksy, V. 2011 Large-Scale Perturbations of Magnetohydrodynamic Regimes: Linear and Weakly Nonlinear Stability Theory. Springer.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Transport and instability in driven two-dimensional magnetohydrodynamic flows

  • Sam Durston (a1) and Andrew D. Gilbert (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.