Skip to main content Accessibility help

Transition to turbulence in an oscillatory flow over a rough wall

  • Marco Mazzuoli (a1) (a2) and Giovanna Vittori (a1)


A study of the oscillatory incompressible flow close to a wall covered with fixed rigid spheres is carried out by numerical means to provide information on unsteady flows over a rough wall. The simulations are carried out for two bottom configurations, characterized by different values of the diameter of the spheres and different values of the Reynolds number for a total of 10 cases. Three different flow regimes are identified as functions of both the Reynolds number and the diameter of the spheres. The force exerted by the flow on the spheres is discussed also in relation to the different flow regimes.


Corresponding author

Email address for correspondence:


Hide All
Acarlar, M. S. & Smith, C. R. 1987 A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. J. Fluid Mech. 175, 141.
Blondeaux, P. 1987 Turbulent boundary layer at the bottom of a gravity wave. J. Hydraul Res. 25, 447464.
Blondeaux, P. & Vittori, G. 1994 Wall imperfections as a triggering mechanism for Stokes-layer transition. J. Fluid Mech. 264, 107135.
Carstensen, S., Sumer, B. M. & Fredsoe, J. 2010 Coherent structures in wave boundary layers. Part 1. Oscillatory motion. J. Fluid Mech. 646, 169206.
Carstensen, S., Sumer, B. M. & Fredsoe, J. 2012 A note on turbulent spots over a rough bed in wave boundary layers. Phys. Fluids 24 (11), 115104.
Costamagna, P., Vittori, G. & Blondeaux, P. 2003 Coherent structures in oscillatory boundary layers. J. Fluid Mech. 474, 133.
Dixen, M., Hatipoglu, F., Sumer, B. M. & Fredsoe, J. 2008 Wave boundary layer over a stone-covered bed. Coast. Engng 55, 120.
Fornarelli, F. & Vittori, G. 2009 Oscillatory boundary layer close to a rough wall. Eur. J. Mech. (B/Fluids) 28, 283295.
Ghodke, C., Skitka, J. & Apte, S. V. 2014 Characterizaton of oscillatory boundary layer over a closely packed bed of sediment particles. J. Comput. Multiphase Flows 6, 447456.
Huang, J. & Greengard, L. 1999 A fast direct solver for elliptic partial differential equations on adaptively refined meshes. SIAM J. Sci. Comput. 21 (4), 15511566.
Jensen, B. L., Sumer, B. M. & Fredsoe, J. 1989 Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 206, 265297.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6794.
Jimenéz, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.
Keiller, D. C. & Sleath, J. F. A. 1976 Velocity measurements close to a rough plate oscillating in its own plane. J. Fluid Mech. 73, 673691.
Mazzuoli, M., Vittori, G. & Blondeaux, P. 2011 Turbulent spots in oscillatory boundary layers. J. Fluid Mech. 685, 365376.
Ozdemir, C. E., Hsu, T. & Balachandar, S. 2014 Direct numerical simulations of transition and turbulence in smooth-walled Stokes boundary layer. Phys. Fluids 26 (4), 045108.
Ricker, P. M. 2008 A direct multigrid Poisson solver for oct-tree adaptive meshes. Astrophys. J. Suppl. 176 (1), 293300.
Rosenthal, G. N. & Sleath, J. F. A. 1986 Measurements of lift in oscillatory flow. J. Fluid Mech. 164, 449467.
Saffman, P. G. 1970 A model for inhomogeneous turbulent flows. Proc. R. Soc. Lond. A 317, 417433.
Saffman, P. G. & Wilcox, P. C. 1974 Turbulence models predictions for turbulent boundary layers. AIAA J. 12, 541546.
Sleath, J. F. A. 1987 Turbulent oscillatory flow over rough beds. J. Fluid Mech. 182, 369409.
Thomas, C., Blennerhassett, P. J., Bassom, A. P. & Davies, C. 2015 The linear stability of a Stokes layer subjected to high-frequency perturbations. J. Fluid Mech. 764, 193218.
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209, 448476.
Vanella, M., Rabenold, P. & Balaras, E. 2010 A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid–structure interaction problems. J. Comput. Phys. 229, 64276449.
Vittori, G. & Verzicco, R. 1998 Direct simulation of transition in an oscillatory boundary layer. J. Fluid Mech. 371, 207232.
Zhou, Z., Wang, Z. & Fan, J. 2010 Direct numerical simulation of the transitional boundary-layer flow induced by an isolated hemispherical roughness element. Comput. Meth. Appl. Mech. Engng 199, 15731582.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title

Mazzuoli et al. supplementary movie
Isosurfaces of λ2 (λ2=-0.11). Rδ =500. Configuration B (D=2.32)

 Video (36.7 MB)
36.7 MB

Mazzuoli et al. supplementary movie
Isosurfaces of λ2 (λ2=-0.11). Rδ =500. Configuration B (D=2.32)

 Video (10.3 MB)
10.3 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed