Skip to main content Accessibility help
×
Home

Transition to the ultimate regime in a radiatively driven convection experiment

  • Vincent Bouillaut (a1), Simon Lepot (a1), Sébastien Aumaître (a1) and Basile Gallet (a1)

Abstract

We report on the transition between two regimes of heat transport in a radiatively driven convection experiment, where a fluid gets heated up within a tunable heating length $\ell$ in the vicinity of the bottom of the tank. The first regime is similar to that observed in standard Rayleigh–Bénard experiments, the Nusselt number $Nu$ being related to the Rayleigh number $Ra$ through the power law $Nu\sim Ra^{1/3}$ . The second regime corresponds to the ‘ultimate’ or mixing-length scaling regime of thermal convection, where $Nu$ varies as the square root of $Ra$ . Evidence for these two scaling regimes has been reported in Lepot et al. (Proc. Natl Acad. Sci. USA, vol. 115, 2018, pp. 8937–8941), and we now study in detail how the system transitions from one to the other. We propose a simple model describing radiatively driven convection in the mixing-length regime. It leads to the scaling relation $Nu\sim (\ell /H)Pr^{1/2}Ra^{1/2}$ , where $H$ is the height of the cell and $Pr$ is the Prandtl number, thereby allowing us to deduce the values of $Ra$ and $Nu$ at which the system transitions from one regime to the other. These predictions are confirmed by the experimental data gathered at various $Ra$ and $\ell$ . We conclude by showing that boundary layer corrections can persistently modify the Prandtl number dependence of $Nu$ at large $Ra$ , for $Pr\gtrsim 1$ .

Copyright

Corresponding author

Email address for correspondence: basile.gallet@cea.fr

References

Hide All
Alhers, G., Grossmann, S. & Lhose, D. 2009 Heat transfer and large-scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503.
Aubert, J., Labrosse, S. & Poitou, C. 2009 Modelling the Palaeo-evolution of the geodynamo. Geophys. J. Intl 179, 14141428.
Barker, A. J., Dempsey, A. M. & Lithwick, Y. 2014 Theory and simulations of rotating convection. Astrophys. J. 791, 13.
Bengtsson, L. 1996 Mixing in ice-covered lakes. Hydrobiologia 322, 9197.
Chavanne, X., Chillá, F., Castaing, B., Hébral, B., Chabaud, B. & Chaussy, J. 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 3648.
Chavanne, X., Chillá, F., Chabaud, B., Castaing, B. & Hébral, B. 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 1300.
Davaille, A., Girard, F. & Le Bars, M. 2002 How to anchor hotspots in a convecting mantle? Earth Planet. Sci. Lett. 203, 621634.
Farmer, D. 1975 Penetrative convection in the absence of mean shear. Q. J. R. Meteorol. Soc. 101, 869891.
Goluskin, D. 2015 Internally heated convection beneath a poor conductor. J. Fluid Mech. 771, 3656.
Goluskin, D. 2016 Internally Heated Convection and Rayleigh–Bénard Convection. Springer.
Gubbins, D., Alfé, D., Masters, G., David Price, G. & Gillan, M. J. 2003 Can the Earth’s dynamo run on heat alone? Geophys. J. Intl. 155, 609622.
Herant, M., Benz, W. & Colgate, S. 1992 Postcollapse hydrodynamics of SN 1987A: two-dimensional simulations of the early evolution. Astrophys. J. 395, 642653.
Janka, H.-T. & Müller, E. 1996 Neutrino heating, convection, and the mechanism of type-II supernova explosion. Astron. Astrophys. 306, 167.
Jonas, T., Terzhevik, A. Y., Mironov, D. V. & Wüest, A. 2003 Radiatively driven convection in an ice-covered lake investigated using temperature microstructure technique. J. Geophys. Res. 108, 3183.
Kazeroni, R., Krueger, B. K., Guilet, J., Foglizzo, T. & Pomaréde, D. 2016 The non-linear onset of neutrino-driven convection in two- and three-dimensional core-collapse supernovae. Mon. Not. R. Astron. Soc. 480, 261280.
Kippenhahn, R. & Weigert, A. 1990 Stellar Structure and Evolution. Springer.
Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 1374.
Kulacki, F. A. & Goldstein, R. J. 1972 Thermal convection in a horizontal fluid layer with uniform volumetric energy sources. J. Fluid Mech. 55, 271287.
Landeau, M. & Aubert, J. 2011 Equatorially asymmetric convection inducing a hemispherical magnetic field in rotating spheres and implications for the past Martian dynamo. Phys. Earth Planet. Inter. 185, 6174.
Lecoanet, D., Le Bars, M., Burns, K. J., Vasil, G. M., Brown, B. P., Quataert, E. & Oishi, J. S. 2015 Numerical simulations of internal wave generation by convection in water. Phys. Rev. E 91, 063016.
Lepot, S., Aumaître, S. & Gallet, B. 2018 Radiative heating achieves the ultimate regime of thermal convection. Proc. Natl Acad. Sci. USA 115, 89378941.
Limare, A., Vilella, K., Di Giuseppe, E., Farnetani, C. G., Kaminski, E., Surducan, E., Surducan, V., Neamtu, C., Fourel, L. & Jaupart, C. 2015 Microwave-heating laboratory experiments for planetary mantle convection. J. Fluid Mech. 777, 5067.
Malkus, W. V. R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225, 196212.
Mironov, D., Terzhevik, A., Kirillin, G., Jonas, T., Malm, J. & Farmer, D. 2002 Radiatively driven convection in ice-covered lakes: observations, scaling, and a mixed-layer model. J. Geophys. Res. 107, 2001JC000892.
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donnelly, R. J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.
Radice, D., Ott, C. D., Abdikamalov, E., Couch, S. M., Haas, R. & Schnetter, E. 2016 Neutrino-driven convection in core-collapse supernovae: high-resolution simulations. Astrophys. J. 820, 76.
Roche, P.-E., Gauthier, F., Kaiser, R. & Salort, J. 2010 On the triggering of the ultimate regime of convection. New. J. Phys. 12, 085014.
Rusaouën, E., Liot, O., Castaing, B., Salort, J. & Chillá, F. 2018 Thermal transfer in Rayleigh–Bénard cell with smooth or rough boundaries. J. Fluid Mech. 837, 443460.
Shen, Y., Tong, P. & Xia, K.-Q. 1996 Turbulent convection over rough surfaces. Phys. Rev. Lett. 76, 908.
Shraiman, B. I. & Siggia, E. D. 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42, 3650(R).
Spiegel, E. A. 1963 A generalization of the mixing-length theory of thermal convection. Astrophys. J. 138, 216225.
Spiegel, E. A. 1971 Convection in stars I. Basic Boussinesq convection. Annu. Rev. Astron. Astrophys. 9, 323352.
Toppaladoddi, S., Succi, S. & Wettlaufer, J. S. 2017 Roughness as a route to the ultimate regime of thermal convection. Phys. Rev. Lett. 118, 074503.
Toppaladoddi, S. & Wettlaufer, J. S. 2018 Penetrative convection at high Rayleigh numbers. Phys. Rev. Fluids 3, 043501.
Ulloa, H. N., Wüest, A. & Bouffard, D. 2018 Mechanical energy budget and mixing efficiency for a radiatively heated ice-covered waterbody. J. Fluid Mech. 852, R1.
Xie, Y.-C. & Xia, K.-Q. 2017 Turbulent thermal convection over rough plates with varying roughness geometry. J. Fluid Mech. 825, 573599.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Transition to the ultimate regime in a radiatively driven convection experiment

  • Vincent Bouillaut (a1), Simon Lepot (a1), Sébastien Aumaître (a1) and Basile Gallet (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.