Skip to main content Accessibility help

Transition to bluff-body dynamics in the wake of vertical-axis wind turbines

  • Daniel B. Araya (a1), Tim Colonius (a2) and John O. Dabiri (a3)


We present experimental data to demonstrate that the far wake of a vertical-axis wind turbine (VAWT) exhibits features that are quantitatively similar to that of a circular cylinder with the same aspect ratio. For a fixed Reynolds number ( $Re\approx 0.8\times 10^{5}$ ) and variable tip-speed ratio, two-dimensional particle image velocimetry (PIV) is used to measure the velocity field in the wake of four different laboratory-scale models: a 2-bladed, 3-bladed and 5-bladed VAWT, as well as a circular cylinder. With these measurements, we use spectral analysis and proper orthogonal decomposition (POD) to evaluate statistics of the velocity field and investigate the large-scale coherent motions of the wake. In all cases, we observe three distinct regions in the VAWT wake: (i) the near wake, where periodic blade vortex shedding dominates; (ii) a transition region, where growth of a shear-layer instability occurs; (iii) the far wake, where bluff-body wake oscillations dominate. We define a dynamic solidity parameter, $\unicode[STIX]{x1D70E}_{D}$ , that relates the characteristic scales of the flow to the streamwise transition location in the wake. In general, we find that increasing $\unicode[STIX]{x1D70E}_{D}$ leads to an earlier transition, a greater initial velocity deficit and a faster rate of recovery in the wake. We propose a coordinate transformation using $\unicode[STIX]{x1D70E}_{D}$ in which the minimum velocity recovery profiles of the VAWT wake closely match that of the cylinder wake. The results have implications for manipulating VAWT wake recovery within a wind farm.


Corresponding author

Email address for correspondence:


Hide All
Andersen, S. J., Sørensen, J. N. & Mikkelsen, R. 2013 Simulation of the inherent turbulence and wake interaction inside an infinitely long row of wind turbines. J. Turbul. 14, 124.
Araya, D. B. & Dabiri, J. O. 2015 A comparison of wake measurements in motor-driven and flow-driven turbine experiments. Exp. Fluids 56 (7), 115.
Bachant, P. & Wosnik, M. 2015 Characterising the near-wake of a cross-flow turbine. J. Turbul. 16 (4), 392410.
Battisti, L., Zanne, L., Anna, S. D., Dossena, V., Persico, G. & Paradiso, B. 2011 Aerodynamic measurements on a vertical axis wind turbine in a large scale wind tunnel. J. Energ. Resour. 133, 031201.
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539575.
Buhl, M. L.2005 A new empirical relationship between thrust coefficient and induction factor for the turbulent windmill state. Tech. Rep. NREL/TP-500-36834. National Renewable Energy Laboratory.
Calaf, M., Meneveau, C. & Meyers, J. 2010 Large eddy simulation study of fully developed wind-turbine array boundary layers. Phys. Fluids 22, 015110.
Chamorro, L. P., Hill, C., Morton, S., Ellis, C., Arndt, R. E. A. & Sotiropoulos, F. 2013 On the interaction between a turbulent open channel flow and an axial-flow turbine. J. Fluid Mech. 716, 658670.
Dabiri, J. O. 2014 Emergent aerodynamics in wind farms. Phys. Today 67, 6667.
Dunne, R. & McKeon, B. J. 2015 Dynamic stall on a pitching and surging airfoil. Exp. Fluids 56 (8), 115.
Edwards, J. M., Danao, L. A. & Howell, R. J. 2015 PIV measurements and CFD simulation of the performance and flow physics and of a small-scale vertical axis wind turbine. Wind Energy 18, 201217.
Eggleston, D. & Stoddard, F. 1987 Wind Turbine Engineering Design. Van Nostrand Reinhold Co. Inc.
Feng, L.-H., Wang, J.-J. & Pan, C. 2011 Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control. Phys. Fluids 23, 014106.
Ferreira, C. S., van Kuik, G., van Bussel, G. & Scarano, F. 2009 Visualization by PIV of dynamic stall on a vertical axis wind turbine. Exp. Fluids 46, 97108.
Fujisawa, N. & Shibuya, S. 2001 Observations of dynamic stall on Darrieus wind turbine blades. J. Wind Engng Ind. Aerodyn. 89, 201214.
Hamilton, N., Tutkun, M. & Cal, R. B. 2015 Wind turbine boundary layer arrays for Cartesian and staggered configurations: part II, low-dimensional representations via the proper orthogonal decomposition. Wind Energy 18, 297315.
Hansen, M. O. L. 2008 Aerodynamics of Wind Turbines, 2nd edn. Earthscan.
Hansen, M. O. L., Sørensen, J. N., Voutsinas, S., Sørensen, N. & Madsen, H. A. 2006 State of the art in wind turbine aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 42, 285330.
Hau, E. 2005 Wind Turbines, 2nd edn. Springer.
Högström, U. D., Asimakopoulos, D. N., Kambezidis, H., Helmist, C. G. & Smedman, A. 1988 A field study of the wake behind a 2MW wind turbine. Atmos. Environ. 22, 803820.
Iungo, G. V. & Porté-Agel, Fernando 2014 Volumetric lidar scanning of wind turbine wakes under convective and neutral atmospheric stability regimes. J. Atmos. Ocean. Technol. 31, 20352048.
Iungo, G. V., Viola, F., Camarri, S., Porté-Agel, F. & Gallaire, F. 2013 Linear stability analysis of wind turbine wakes performed on wind tunnel measurements. J. Fluid Mech. 737, 499526.
Kinzel, M., Mulligan, Q. & Dabiri, J. O. 2012 Energy exchange in an array of vertical-axis wind turbines. J. Turbul. 13 (38), 113.
Kostas, J., Soria, J. & Chong, M. S. 2005 A comparison between snapshot POD analysis of PIV velocity and vorticity data. Exp. Fluids 38, 146160.
Lam, K. M. 2009 Vortex shedding flow behind a slowly rotating circular cylinder. J. Fluids Struct. 25, 245262.
Laneville, A. & Vittecoq, P. 1986 Dynamic stall: the case of the vertical axis wind turbine. J. Solar Energy Engng 108, 140145.
Larsen, G. C., Madsen, H. A., Thomsen, K. & Larsen, T. J. 2008 Wake meandering: a pragmatic approach. Wind Energy 11, 377395.
Leishman, G. J. 2006 Principles of Helicopter Aerodynamics. Cambridge University Press.
Madsen, H. A.1982 The actuator cylinder – a flow model for vertical axis wind turbines. PhD thesis, Aalborg University Center.
Medici, D. & Alfredsson, P. H. 2006 Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding. Wind Energy 9, 219236.
Medici, D. & Alfredsson, P. H. 2008 Measurements behind model wind turbines: further evidence of wake meandering. Wind Energy 11, 211217.
Mittal, S. & Kumar, B. 2003 Flow past a rotating cylinder. J. Fluid Mech. 476, 303334.
Myers, L. E. & Bahaj, A. S. 2010 Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators. Ocean Engng 37, 218227.
Okulov, V. L., Naumov, I. V., Mikkelsen, R. F., Kabardin, I. K. & Sørensen, J. N. 2014 A regular strouhal number for large-scale instability in the far wake of a rotor. J. Fluid Mech. 747, 369380.
Picard, C. & Delville, J. 2000 Pressure velocity coupling in a subsonic round jet. Intl J. Heat Fluid Flow 21, 359364.
Porté-Agel, F., Wu, Y.-T. & Chen, C.-H. 2013 A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm. Energy 6, 52975313.
Rolin, V. & Porté-Agel, F. 2015 Wind-tunnel study of the wake behind a vertical axis wind turbine in a boundary layer flow using stereoscopic particle image velocimetry. J. Phys.: Conf. Ser. 625, 012012.
Roshko, A. 1961 Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech. 10, 345356.
Schlichting, H. 1960 Boundary Layer Theory, 4th edn. McGraw-Hill.
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures part I: coherent structures. Q. Appl. Maths XLV, 561571.
Sutherland, H. J., Berg, D. E. & Ashwill, T. D.2012 A restrospective of VAWT technology Tech. Rep. SAND2012-0304. Sandia National Laboratories.
Tescione, G., Ragni, D., He, C., Ferreira, C. J., Simão & van Bussel, G. J. W. 2014 Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. J. Renew. Energ. 70, 4761.
Thomsen, K. & Sørensen, P. 1999 Fatigue loads for wind turbines operating in wakes. J. Wind Engng Ind. Aerodyn. 80, 121136.
VerHulst, C. & Meneveau, C. 2014 Large eddy simulation study of the kinetic energy entrainment by energetic turbulent flow structures in large wind farms. Phys. Fluids 26, 025113.
Vermeer, L. J., Sørensen, J. N. & Crespo, A. 2003 Wind turbine wake aerodynamics. Prog. Aerosp. Sci. 39, 467510.
Welch, P. D. 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 7073.
Zhang, W., Markfort, C. D. & Porté-Agel, F. 2013 Wind turbine wakes in a convective boundary layer: a wind tunnel-study. Boundary-Layer Meteorol. 146, 161179.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Transition to bluff-body dynamics in the wake of vertical-axis wind turbines

  • Daniel B. Araya (a1), Tim Colonius (a2) and John O. Dabiri (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.