Skip to main content Accessibility help
×
×
Home

Transient growth in the near wake region of the flow past a finite span wing

  • V. Brion (a1) and L. Jacquin (a1)

Abstract

We investigate optimal perturbation in the flow past a finite aspect ratio ( $AR$ ) wing. The optimization is carried out in the regime where the fully developed flow is steady. Parametric study over time horizon ( $T$ ), Reynolds number ( $Re$ ), $AR$ , angle of attack and geometry of the wing cross-section (flat plate and NACA0012 airfoil) shows that the general shape of linear optimal perturbation remains the same over the explored parameter space. Optimal perturbation is located near the surface of the wing in the form of chord-wise periodic structures whose strength decreases from the root towards the tip. Direct time integration of the disturbance equations, with and without nonlinear terms, is carried out with linear optimal perturbation as initial condition. In both cases, the optimal perturbation evolves as a downstream travelling wavepacket whose speed is nearly the same as that of the free stream. The energy of the wavepacket increases in the near wake region, and is found to remain nearly constant beyond the vortex roll-up distance in nonlinear simulations. The nonlinear wavepacket results in displacement of the tip vortex. In this situation, the motion of the tip vortex resembles that observed during vortex meandering/wandering in wind tunnel experiments. Results from computation carried out at higher $Re$ suggest that, even beyond the steady flow regime, a perturbation wavepacket originating near the wing might cause meandering of tip vortices.

Copyright

Corresponding author

Email address for correspondence: navrose@iitk.ac.in

References

Hide All
Åkervik, E., Ehrenstein, U., Gallaire, F. & Henningson, D. S. 2008 Global two-dimensional stability measures of the flat plate boundary-layer flow. Eur. J. Mech. (B/Fluids) 27, 501513.
del Álamo, J. C. & Jiménez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.
Antkowiak, A. & Brancher, P. 2004 Transient energy growth for the Lamb–Oseen vortex. Phys. Fluids 16 (1), L1L4.
Antkowiak, A. & Brancher, P. 2007 On vortex rings around vortices: an optimal mechanism. J. Fluid Mech. 578, 295304.
Batchelor, G. K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20, 645658.
Bilanin, A. & Widnall, S.1973 Aircraft wake dissipation by sinusoidal instability and vortex breakdown. AIAA Paper 73-107.
Brion, V., Sipp, D. & Jacquin, L. 2007 Optimal amplification of the Crow instability. Phys. Fluids 19 (11), 111703.
Cherubini, S. & De Palma, P. 2013 Nonlinear optimal perturbations in a Couette flow: bursting and transition. J. Fluid Mech. 716, 251279.
Cherubini, S., De Palma, P., Robinet, J.-C. & Bottaro, A. 2011 The minimal seed of turbulent transition in the boundary layer. J. Fluid Mech. 689, 221253.
Corbett, P. & Bottaro, A. 2000 Optimal perturbations for boundary layers subject to streamwise pressure gradient. Phys. Fluids 12, 120130.
Cotel, A. J. & Breidenthal, R. E. 1999 Turbulence inside a vortex. Phys. Fluids 11, 30263029.
Crouch, J. D. 1997 Instability and transient growth for two trailing-vortex pairs. J. Fluid Mech. 350, 311330.
Crouch, J. D., Miller, G. D. & Spalart, P. R. 2001 Active-control system for breakup of airplane trailing vortices. AIAA J. 39 (12), 23742381.
Crow, S. C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8 (12), 21722179.
Crow, S. C. & Bate, E. R. 1976 Lifespan of trailing vortices in a turbulent atmosphere. J. Aircraft 13 (7), 476482.
Cossu, C., Pujals, G. & Depardon, S. 2009 Optimal transient growth and very large-scale structures in turbulent boundary layers. J. Fluid Mech. 619, 7994.
Czech, M., Miller, G., Crouch, J. & Strelets, M.2004 Near-field evolution of trailing vortices behind aircraft with flaps deployed. AIAA Paper 2004-2149.
Dacles-Mariani, J., Zilliac, G. G., Chow, J. S. & Bradshaw, P. 1995 Numerical/experimental study of a wingtip vortex in the near field. AIAA J. 33, 15611568.
Donnadieu, C., Ortiz, S., Chomaz, J.-M. & Billant, P. 2009 Three-dimensional instabilities and transient growth of a counter-rotating vortex pair. Phys. Fluids 21 (9), 094102.
Edstrand, A. M., Davis, T. B., Schmid, P. J., Taira, K. & Cattafesta, L. N. 2016 On the mechanism of trailing vortex wandering. J. Fluid Mech. 801, R1.
Edstrand, A. M., Schmid, P. J., Taira, K. & Cattafesta, L. N. 2018 A parallel stability analysis of a trailing vortex wake. J. Fluid Mech. 837, 858895.
Fabre, D. & Jacquin, L. 2000 Stability of a four-vortex aircraft wake model. Phys. Fluids 12 (10), 24382443.
Fabre, D., Jacquin, L. & Loof, A. 2002 Optimal perturbations in a four-vortex aircraft wake in counter-rotating configuration. J. Fluid Mech. 451, 319328.
Fabre, D., Sipp, D. & Jacquin, L. 2006 Kelvin waves and the singular modes of the Lamb–Oseen vortex. J. Fluid Mech. 551, 235274.
Farrell, B. F. 1988 Optimal excitation of perturbations in viscous shear flow. Phys. Fluids 31 (8), 2093.
Fischer, P., Lottes, J. & Kerkemeier, S.2008 Nek5000 Web Page. http://nek5000.mcs.anl.gov.
Fontane, J., Fabre, D. & Brancher, P. 2008 Stochastic forcing of the Lamb–Oseen vortex. J. Fluid Mech. 613, 233254.
Jacquin, L., Fabre, D., Geffroy, P. & Coustols, E.2001 The properties of a transport aircraft wake in the extended near field – an experimental study. AIAA Paper 2001-1038.
Johnson, H., Brion, V. & Jacquin, L. 2016 Crow instability: nonlinear response to the linear optimal perturbation. J. Fluid Mech. 795, 652670.
Jugier, R.2016 Stabilité bidimensionnelle de modeles de sillage d’aéronefs. PhD thesis.
Kerswell, R. R. 2018 Nonlinear nonmodal stability theory. Annu. Rev. Fluid Mech. 50 (1), 319345.
Krasny, R. 1987 Computation of vortex sheet roll-up in the Trefftz plane. J. Fluid Mech. 184, 123155.
Leweke, T., Le Dizés, S. & Williamson, C. H. K. 2016 Dynamics and instabilities of vortex pair. Annu. Rev. Fluid Mech. 48, 507541.
Moore, D. W. & Saffman, P. G. 1973 Axial flow in laminar trailing vortices. Proc. R. Soc. Lond. A 333, 491508.
Navrose, J. H., Brion, V., Jacquin, L. & Robinet, J. C. 2018 Optimal perturbation for 2D vortex systems: route to non-axisymmetric state. J. Fluid Mech. 855, 922952.
Orr, W. McF. 1907 Stability or instability of the steady motions of a perfect liquid. Proc. Ir. Acad. Sect. A, Math. Astron. Phys. Sci. 27, 969.
Ortega, J. M. & Savaş, O. 2001 Rapidly growing instability mode in trailing multiple-vortex wakes. AIAA J. 39 (4), 750754.
Pradeep, D. S. & Hussain, F. 2006 Transient growth of perturbations in a vortex column. J. Fluid Mech. 550, 251288.
Rennich, S. C. & Lele, S. K. 1999 Method for accelerating the destruction of aircraft wake vortices. J. Aircraft 36 (2), 398404.
Roy, C. & Leweke, T.2008 Experiments on vortex meandering. European project ‘FAR-Wake’ (AST4-CT-2005-012238), Tech. Rep. TR 1.1.1-4.
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.
Schmid, P. J. & Brandt, L. 2014 Analysis of fluid systems: stability, receptivity, sensitivity lecture notes from the FLOW-NORDITA summer school on advanced instability methods for complex flows, Stockholm, Sweden, 2013. Appl. Mech. Rev. 66 (2), 024803.
Shur, M. L., Strelets, M. K., Travin, A. K. & Spalart, P. R. 2000 Turbulence modeling in rotating and curved channels: assessing the Spalart–Shur correction. AIAA J. 38, 784792.
Schrader, L.-U., Brandt, L. & Henningson, D. S. 2009 Receptivity mechanisms in three-dimensional boundary-layer flows. J. Fluid Mech. 618, 209241.
Spalart, P. R. 1998 Airplane trailing vortices. Annu. Rev. Fluid Mech. 30 (1), 107138.
Trefethen, L., Trefethen, A., Reddy, S. & Driscoll, T. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.
Zeman, O. 1995 The persistence of trailing vortices: a modeling study. Phys. Fluids 7 (1), 135143.
Zuccher, S., Bottaro, A. & Luchini, P. 2006 Algebraic growth in a Blasius boundary layer: nonlinear optimal disturbances. Eur. J. Mech. (B/Fluids) 25, 117.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed