Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T09:02:38.872Z Has data issue: false hasContentIssue false

Transformation of a shoaling undular bore

Published online by Cambridge University Press:  24 August 2012

G. A. El*
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
R. H. J. Grimshaw
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
W. K. Tiong
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
*
Email address for correspondence: G.El@lboro.ac.uk

Abstract

We consider the propagation of a shallow-water undular bore over a gentle monotonic bottom slope connecting two regions of constant depth, in the framework of the variable-coefficient Korteweg–de Vries equation. We show that, when the undular bore advances in the direction of decreasing depth, its interaction with the slowly varying topography results, apart from an adiabatic deformation of the bore itself, in the generation of a sequence of isolated solitons – an expanding large-amplitude modulated solitary wavetrain propagating ahead of the bore. Using nonlinear modulation theory we construct an asymptotic solution describing the formation and evolution of this solitary wavetrain. Our analytical solution is supported by direct numerical simulations. The presented analysis can be extended to other systems describing the propagation of undular bores (dispersive shock waves) in weakly non-uniform environments.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ablowitz, M. J., Baldwin, D. E. & Hoefer, M. A. 2009 Soliton generation and multiple phases in dispersive shock and rarefaction wave interaction. Phys. Rev. E 80, 016603.CrossRefGoogle ScholarPubMed
2. Baines, P. G. 1995 Topographic Effects in Stratified Flows. Cambridge University Press.Google Scholar
3. Boussinesq, J. 1872 Théorie des ondes des remous qui se propagent le long d’un canal rectangulaire, en communuuant au liquide contenu dans ce canal des vitesses sensblemnt pareilles de la surface au fond. J. Math. Pures Appl. 17, 55108.Google Scholar
4. Claeys, T. & Grava, T. 2010 Solitonic asymptotics for the Korteweg-de Vries equation in the small dispersion limit. SIAM J. Math. Anal. 42, 21322154.CrossRefGoogle Scholar
5. El, G. A. 2005 Resolution of a shock in hyperbolic systems modified by weak dispersion. Chaos 15, 037103.CrossRefGoogle ScholarPubMed
6. El, G. A. & Grimshaw, R. H. J. 2002 Generation of undular bores in the shelves of slowly-varying solitary waves. Chaos 12, 10151026.CrossRefGoogle ScholarPubMed
7. El, G. A., Grimshaw, R. H. J. & Kamchatnov, A. M. 2007 Evolution of solitary waves and undular bores in shallow-water flows over a gradual slope with bottom friction. J. Fluid Mech. 585, 213244.CrossRefGoogle Scholar
8. El, G. A., Grimshaw, R. H. J. & Smyth, N. F. 2006 Unsteady undular bores in fully nonlinear shallow-water theory. Phys. Fluids 18, 027104.CrossRefGoogle Scholar
9. El, G. A., Grimshaw, R. H. J. & Smyth, N. F. 2009 Transcritical shallow-water flow past topography: finite-amplitude theory. J. Fluid Mech. 640, 187215.CrossRefGoogle Scholar
10. El, G. A., Khodorovskii, V. V. & Leszczyszyn, A. M. 2012 Refraction of dispersive shock waves. Physica D 241, 15671587.CrossRefGoogle Scholar
11. Esler, J. G. & Pearce, J. D. 2011 Dispersive dam-break and lock-exchange flows in a two-layer fluid. J. Fluid Mech. 667, 555585.CrossRefGoogle Scholar
12. Fornberg, B. & Whitham, G. B. 1978 A numerical and theoretical study of certain nonlinear wave phenomena. Phil. Trans. R. Soc. Lond. A 289, 373404.Google Scholar
13. Grimshaw, R. 1979 Slowly varying solitary waves. I Korteweg-de Vries equation. Proc. R. Soc. Lond. A 368, 359375.Google Scholar
14. Grimshaw, R. 1981 Evolution equations for long nonlinear internal waves in stratified shear flows. Stud. Appl. Maths 65, 159188.CrossRefGoogle Scholar
15. Grimshaw, R. 2007a Internal solitary waves in a variable medium. Gesellsch. Angew. Math. 30, 96109.Google Scholar
16. Grimshaw, R. 2007b Solitary waves propagating over variable topography. In Tsunami and Nonlinear Waves (ed. Kundu, A. ), pp. 4962. Springer.Google Scholar
17. Grimshaw, R., Pelinovsky, E., Talipova, T. & Kurkin, A. 2004 Simulation of the transformation of internal solitary waves on oceanic shelves. J. Phys. Oceanogr. 34, 27742779.CrossRefGoogle Scholar
18. Grimshaw, R. H. J. & Smyth, N. F. 1986 Resonant flow of a stratified fluid over topography. J. Fluid Mech. 169, 429464.CrossRefGoogle Scholar
19. Gurevich, A. V. & Pitaevskii, L. P. 1974 Nonstationary structure of a collisionless shock wave. Sov. Phys. JETP 38, 291297.Google Scholar
20. Johnson, R. S. 1973 On the development of a solitary wave moving over an uneven bottom. Proc. Camb. Phil. Soc. 73, 183203.CrossRefGoogle Scholar
21. Johnson, R. S. 1997 A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press.CrossRefGoogle Scholar
22. Kakutani, T. 1971 Effect of an uneven bottom on gravity waves. J. Phys. Soc. Japan 30, 272276.CrossRefGoogle Scholar
23. Kamchatnov, A. M. 2004 On Whitham theory for perturbed integrable equations. Physica D 188, 247261.CrossRefGoogle Scholar
24. Kaup, D. J. & Newell, A. C. 1979 Solitons as particles, oscillators, and in slowly changing media: a singular perturbation theory. Proc. R. Soc. Lond. A 361, 413446.Google Scholar
25. Kawahara, T. 1975 Derivative-expansion method for nonlinear waves on a liquid layer of slowly varying depth. J. Phys. Soc. Japan 38, 12001206.CrossRefGoogle Scholar
26. Khruslov, E. A. 1976 Asymptotics of the solution of the Cauchy problem for the Korteweg-de Vries equation with step-like initial data. Math. USSR-Sb. 28, 229248.CrossRefGoogle Scholar
27. Kivshar, Yu. S. & Malomed, B. A. 1989 Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763907.CrossRefGoogle Scholar
28. Madsen, O. S. & Mei, C. C. 1969 The transformation of a solitary wave over an uneven bottom. J. Fluid Mech. 39, 781891.CrossRefGoogle Scholar
29. Madsen, P. A., Fuhrman, D. R. & Schäffer, H. A. 2008 On the solitary wave paradigm for tsunamis. J. Geophys. Res. 113, C12012.Google Scholar
30. Malomed, B. A. & Shrira, V. I. 1991 Soliton caustics. Physica D 53, 112.CrossRefGoogle Scholar
31. Miles, J. W. 1983a Solitary wave evolution over a gradual slope with turbulent friction. J. Phys. Oceanogr. 13, 551553.2.0.CO;2>CrossRefGoogle Scholar
32. Miles, J. W. 1983b Wave evolution over a gradual slope with turbulent friction. J. Fluid Mech. 133, 207216.CrossRefGoogle Scholar
33. Newell, A. 1985 Solitons in Mathematics and Physics. SIAM.CrossRefGoogle Scholar
34. Ostrovsky, L. A. & Pelinovsky, E. N. 1975 Refraction of nonlinear sea waves in a coastal zone. Izv. Akad. Nauk SSSR Atmos. Ocean. Phys. 11, 3741.Google Scholar
35. Schiesser, W. E. 1991 The Numerical Method of Lines: Integration of Partial Differential Equations. Academic.Google Scholar
36. Scotti, A., Beardsley, R. C., Butman, B. & Pineda, J. 2008 Shoaling of nonlinear internal waves in Massachusetts bay. J. Geophys. Res. 113, C08031.Google Scholar
37. Smyth, N. F. & Holloway, P. E. 1988 Hydraulic jump and undular bore formation on a shelf break. J. Phys. Oceanogr. 18, 947962.2.0.CO;2>CrossRefGoogle Scholar
38. Tissier, M., Bonneton, P., Marche, F., Chazel, F. & Lannes, D. 2011 Nearshore dynamics of tsunami-like undular bores using a fully nonlinear Boussinesq model. J. Coastal Res. 603607 (Special Issue 64).Google Scholar
39. Whitham, G. B. 1965 Non-linear dispersive waves. Proc. R. Soc. Lond. A 283, 238261.Google Scholar
40. Whitham, G. B. 1974 Linear and Nonlinear Waves. J. Wiley and Sons.Google Scholar
41. Whitham, G. B. 1984 Comments on periodic waves and solitons. IMA J. Appl. Maths 32, 353366.CrossRefGoogle Scholar