Skip to main content Accessibility help

Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation

  • A. M. Kamchatnov (a1), Y.-H. Kuo (a2), T.-C. Lin (a3), T.-L. Horng (a4), S.-C. Gou (a5), R. Clift (a6), G. A. El (a6) and R. H. J. Grimshaw (a6)...


Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg–de Vries, or Gardner, equation. We consider both possible signs for the cubic nonlinear term in the Gardner equation corresponding to different fluid density stratification profiles. We identify the range of the input parameters: the oncoming flow speed (the Froude number) and the topographic amplitude, for which the obstacle supports a stationary localised hydraulic transition from the subcritical flow upstream to the supercritical flow downstream. Such a localised transcritical flow is resolved back into the equilibrium flow state away from the obstacle with the aid of unsteady coherent nonlinear wave structures propagating upstream and downstream. Along with the regular, cnoidal undular bores occurring in the analogous problem for the single-layer flow modelled by the forced Korteweg–de Vries equation, the transcritical internal wave flows support a diverse family of upstream and downstream wave structures, including kinks, rarefaction waves, classical undular bores, reversed and trigonometric undular bores, which we describe using the recent development of the nonlinear modulation theory for the (unforced) Gardner equation. The predictions of the developed analytic construction are confirmed by direct numerical simulations of the forced Gardner equation for a broad range of input parameters.


Corresponding author

Email address for correspondence:


Hide All
Akylas, T. R. 1984 On the excitation of long nonlinear water waves by a moving pressure distribution. J. Fluid Mech. 141, 455466.
Apel, J. R., Ostrovsky, L. A., Stepanyants, Y. A. & Lynch, J. F. 2007 Internal solitons in the ocean and their effect on underwater sound. J. Acoust. Soc. Am. 121, 695722.
Baines, P. G. 1984 A unified description of two-layer flow over topography. J. Fluid Mech. 146, 127167.
Baines, P. G. 1995 Topographic Effects in Stratified Flows. Cambridge University Press.
Cole, S. L. 1985 Transient waves produced by flow past a bump. Wave Motion 7, 579587.
El, G. A., Grimshaw, R. H. J. & Smyth, N. F. 2009 Transcritical shallow-water flow past topography: finite-amplitude theory. J. Fluid Mech. 640, 187214.
Esler, J. G. & Pierce, J. D. 2011 Dispersive dam-break and lock-exchange flows in a two-layer fluid. J. Fluid Mech. 667, 555585.
Fornberg, B. & Whitham, G. B. 1978 A numerical and theoretical study of certain nonlinear wave phenomena. Phil. Trans. R. Soc. A 289, 373404.
Grimshaw, R. 2001 Environmental Stratified Flows. Kluwer Academic.
Grimshaw, R. H. J., Chan, K. H. & Chow, K. W. 2002 Transcritical flow of a stratified fluid: the forced extended Korteweg–de Vries model. Phys. Fluids 14, 755774.
Grimshaw, R. H. J. & Smyth, N. F. 1986 Resonant flow of a stratified fluid over topography. J. Fluid Mech. 697, 237272.
Gurevich, A. V. & Pitaevskii, L. P. 1974 Nonstationary structure of a collisionless shock wave. Sov. Phys. JETP 38, 291297.
Helfrich, K. R. & Melville, W. K. 2006 Long nonlinear internal waves. Annu. Rev. Fluid Mech. 38, 395425.
Holloway, P., Pelinovsky, E. & Talipova, T. 2001 Internal tide transformation and oceanic internal solitary waves. In Environmental Stratified Flows (ed. Grimshaw, R.), pp. 3160. Kluwer.
Kakutani, T. & Yamasaki, N. 1978 Solitary waves on a two-layer fluid. J. Phys. Soc. Japan 45, 674679.
Kamchatnov, A. M., Kuo, Y.-H., Lin, T.-C., Horng, T.-L., Gou, S.-C., Clift, R., El, G. A. & Grimshaw, R. H. J. 2012 Undular bore theory for the Gardner equation. Phys. Rev. E 86, 036605.
Kodama, Y., Pierce, V. U. & Tian, F.-R. 2008 On the Whitham equations for the defocusing complex modified KdV equation. SIAM J. Math. Anal. 41, 2658.
LeFloch, P. G. 2002 Hyperbolic Systems of Conservation Laws. Birkhauser.
Leszczyszyn, A. M., El, G. A., Gladush, Yu. G. & Kamchatnov, A. M. 2009 Transcritical flow of a Bose–Einstein condensate through a penetrable barrier. Phys. Rev. A 79, 063608.
Madsen, P. A. & Hansen, A. B. 2012 Transient waves generated by a moving bottom obstacle: a new near-field solution. J. Fluid Mech. 169, 429464.
Marchant, T. R. 2008 Undular bores and the initial–boundary value problem for the modified Korteweg–de Vries equation. Wave Motion 45, 540555.
Marchant, T. R. & Smyth, N. F. 1990 The extended Korteweg–de Vries equation and the resonant flow of a fluid over topography. J. Fluid Mech. 221, 263287.
Marchant, T. R. & Smyth, N. F. 2020 The initial boundary problem for the Korteweg–de Vries equation on the negative quarter-plane. J. Fluid Mech. 458, 857871.
Melville, W. K. & Helfrich, K. R. 1987 Transcritical two-layer flow over topography. J. Fluid Mech. 178, 3152.
Michallet, H. & Barthélemy, E. 1998 Experimental study of interfacial solitary waves. J. Fluid Mech. 366, 159177.
Smyth, N. 1987 Modulation theory solution for resonant flow over topography. Proc. R. Soc. Lond. A 409, 7997.
Trefethen, L. N. 2000 Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics.
Wan, W., Muenzel, S. & Fleischer, J. W. 2010 Wave tunneling and hysteresis in nonlinear junctions. Phys. Rev. Lett. 104, 073903.
White, B. L. & Helfrich, K. R. 2012 A general description of a gravity current front propagating in a two-layer stratified fluid. J. Fluid Mech. 711, 545575.
Whitham, G. B. 1965 Non-linear dispersive waves. Proc. R. Soc. A 283, 238261.
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley-Interscience.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed