Skip to main content Accessibility help

Three-dimensional free-surface flow over arbitrary bottom topography

  • Nicholas R. Buttle (a1), Ravindra Pethiyagoda (a1), Timothy J. Moroney (a1) and Scott W. McCue (a1)


We consider steady nonlinear free surface flow past an arbitrary bottom topography in three dimensions, concentrating on the shape of the wave pattern that forms on the surface of the fluid. Assuming ideal fluid flow, the problem is formulated using a boundary integral method and discretised to produce a nonlinear system of algebraic equations. The Jacobian of this system is dense due to integrals being evaluated over the entire free surface. To overcome the computational difficulty and large memory requirements, a Jacobian-free Newton–Krylov (JFNK) method is utilised. Using a block-banded approximation of the Jacobian from the linearised system as a preconditioner for the JFNK scheme, we find significant reductions in computational time and memory required for generating numerical solutions. These improvements also allow for a larger number of mesh points over the free surface and the bottom topography. We present a range of numerical solutions for both subcritical and supercritical regimes, and for a variety of bottom configurations. We discuss nonlinear features of the wave patterns as well as their relationship to ship wakes.


Corresponding author

Email address for correspondence:


Hide All
Binder, B. J., Blyth, M. G. & Balasuriya, S. 2014 Non-uniqueness of steady free-surface flow at critical Froude number. Europhys. Lett. 105, 44003.
Binder, B. J., Blyth, M. G. & McCue, S. W. 2013 Free-surface flow past arbitrary topography and an inverse approach for wave-free solutions. IMA J. Appl. Maths 78, 685696.
Binder, B. J., Dias, F. & Vanden-Broeck, J.-M. 2006 Steady free-surface flow past an uneven channel bottom. Theor. Comput. Fluid Dyn. 20, 125144.
Broutman, D., Rottman, J. W. & Eckermann, S. D. 2010 A simplified Fourier method for nonhydrostatic mountain waves. J. Atmos. Sci. 60, 26862696.
Brown, P. N. & Saad, Y. 1990 Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comput. 11, 450481.
Chapman, S. J. & Vanden-Broeck, J.-M. 2006 Exponential asymptotics and gravity waves. J. Fluid Mech. 567, 299326.
Chardard, F., Dias, F., Nguyen, H. Y. & Vanden-Broeck, J.-M. 2011 Stability of some stationary solutions to the forced KdV equation with one or two bumps. J. Engng Maths 70, 175189.
Chuang, J. M. 2000 Numerical studies on non-linear free surface flow using generalized Schwarz–Christoffel transformation. Intl J. Numer. Meth. Fluids 32, 745772.
Darmon, A., Benzaquen, M. & Raphaël, E. 2014 Kelvin wake pattern at large Froude numbers. J. Fluid Mech. 738, R3.
Dias, F. 2014 Ship waves and Kelvin. J. Fluid Mech. 746, 14.
Dias, F. & Vanden-Broeck, J.-M. 1989 Open channel flows with submerged obstructions. J. Fluid Mech. 206, 155170.
Dias, F. & Vanden-Broeck, J.-M. 2002 Generalised critical free-surface flows. J. Engng Maths 42, 291301.
Eckermann, S. D., Lindeman, J., Broutman, D., Ma, J. & Boybeyi, Z. 2010 Momentum fluxes of gravity waves generated by variable Froude number flow over three-dimensional obstacles. J. Atmos. Sci. 67, 22602278.
Ellingsen, S. Å. 2014 Ship waves in the presence of uniform vorticity. J. Fluid Mech. 742, R2.
Forbes, L. K. 1985 On the effects of non-linearity in free-surface flow about a submerged point vortex. J. Engng Maths 19, 139155.
Forbes, L. K. 1989 An algorithm for 3-dimensional free-surface problems in hydrodynamics. J. Comput. Phys. 82, 330347.
Forbes, L. K. & Hocking, G. C. 2005 Flow due to a sink near a vertical wall, in infinitely deep fluid. Comput. Fluids 34, 684704.
Forbes, L. K. & Schwartz, L. W. 1982 Free-surface flow over a semicircular obstruction. J. Fluid Mech. 114, 299314.
Gazdar, A. S. 1973 Generation of waves of small amplitude by an obstacle placed on the bottom of a running stream. J. Phys. Soc. Japan 34, 530538.
He, J., Zhang, C., Zhu, Y., Wu, H., Yang, C.-J., Noblesse, F., Gu, X. & Li, W. 2014 Comparison of three simple models of Kelvin’s ship wake. Eur. J. Mech. (B/Fluids) 49, 1219.
Higgins, P. J., Read, W. W. & Belward, S. R. 2006 A series-solution method for free-boundary problems arising from flow over topography. J. Engng Maths 54, 345358.
Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E. & Woodward, C. S. 2005 SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31, 363396.
Hocking, G. C., Holmes, R. J. & Forbes, L. K. 2013 A note on waveless subcritical flow past a submerged semi-ellipse. J. Engng Maths 81, 18.
King, A. C. & Bloor, M. I. G. 1990 Free-surface flow of a stream obstructed by an arbitrary bed topography. Q. J. Mech. Appl. Maths 43, 87106.
Knoll, D. A. & Keyes, D. E. 2004 Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193, 357397.
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.
Li, Y. & Ellingsen, S. Å. 2016 Ship waves on uniform shear current at finite depth: wave resistance and critical velocity. J. Fluid Mech. 791, 539567.
Lustri, C. J., McCue, S. W. & Binder, B. J. 2012 Free surface flow past topography: a beyond-all-orders approach. Eur. J. Appl. Maths 23, 441467.
McCue, S. W. & Forbes, L. K. 2002 Free-surface flows emerging from beneath a semi-infinite plate with constant vorticity. J. Fluid Mech. 461, 387407.
Miao, S. & Liu, Y. 2015 Wave pattern in the wake of an arbitrary moving surface pressure disturbance. Phys. Fluids 27, 122102.
Noblesse, F., He, J., Zhu, Y., Hong, L., Zhang, C., Zhu, R. & Yang, C. 2014 Why can ship wakes appear narrower than Kelvin’s angle? Eur. J. Mech. (B/Fluids) 46, 164171.
Părău, E. I. & Vanden-Broeck, J.-M. 2002 Nonlinear two-and three-dimensional free surface flows due to moving disturbances. Eur. J. Mech. (B/Fluids) 21, 643656.
Părău, E. I. & Vanden-Broeck, J.-M. 2011 Three-dimensional waves beneath an ice sheet due to a steadily moving pressure. Phil. Trans. R. Soc. Lond. A 369, 29732988.
Părău, E. I., Vanden-Broeck, J.-M. & Cooker, M. J. 2005a Nonlinear three-dimensional gravity–capillary solitary waves. J. Fluid Mech. 536, 99105.
Părău, E. I., Vanden-Broeck, J.-M. & Cooker, M. J. 2005b Three-dimensional gravity-capillary solitary waves in water of finite depth and related problems. Phys. Fluids 17, 122101.
Părău, E. I., Vanden-Broeck, J.-M. & Cooker, M. J. 2007a Nonlinear three-dimensional interfacial flows with a free surface. J. Fluid Mech. 591, 481494.
Părău, E. I., Vanden-Broeck, J.-M. & Cooker, M. J. 2007b Three-dimensional capillary-gravity waves generated by a moving disturbance. Phys. Fluids 19, 082102.
Pethiyagoda, R., McCue, S. W., Moroney, T. J. & Back, J. M. 2014a Jacobian-free Newton–Krylov methods with GPU acceleration for computing nonlinear ship wave patterns. J. Comput. Phys. 269, 297313.
Pethiyagoda, R., McCue, S. W. & Moroney, T. J. 2014b What is the apparent angle of a Kelvin ship wave pattern? J. Fluid Mech. 758, 468485.
Pethiyagoda, R., McCue, S. W. & Moroney, T. J. 2015 Wake angle for surface gravity waves on a finite depth fluid. Phys. Fluids 27, 061701.
Pethiyagoda, R., McCue, S. W. & Moroney, T. J. 2017 Spectrograms of ship wakes: identifying linear and nonlinear wave signals. J. Fluid Mech. 811, 189209.
Pethiyagoda, R., Moroney, T. J., MacFarlane, G. J., Binns, J. R. & McCue, S. W. 2018a Time-frequency analysis of ship wave patterns in shallow water: modelling and experiments. Ocean Engng 158, 123131.
Pethiyagoda, R., Moroney, T. J. & McCue, S. W. 2018b Efficient computation of two-dimensional steady free-surface flows. Intl J. Numer. Meth. Fluids 86, 607624.
Rabaud, M. & Moisy, F. 2013 Ship wakes: Kelvin or Mach angle? Phys. Rev. Lett. 110, 214503.
Saad, Y. & Schultz, M. H. 1986 GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856869.
Scullen, D. C.1998 Accurate computation of steady nonlinear free-surface flows. PhD thesis, Department of Applied Mathematics, University of Adelaide.
Smeltzer, B. K. & Ellingsen, S. Å. 2017 Surface waves on currents with arbitrary vertical shear. Phys. Fluids 29, 047102.
Soomere, T. 2007 Nonlinear components of ship wake waves. Appl. Mech. Rev. 60, 120138.
Teixeira, M. A. C. 2014 The physics of orographic gravity wave drag. Frontiers Phys. 2, 43.
Torsvik, T., Soomere, T., Didenkulova, I. & Sheremet, A. 2015 Identification of ship wake structures by a time-frequency method. J. Fluid Mech. 765, 229251.
Wade, S. L., Binder, B. J., Mattner, T. W. & Denier, J. P. 2017 Steep waves in free-surface flow past narrow topography. Phys. Fluids 29, 062107.
Wehausen, J. V. & Laitone, E. V. 1960 Surface Waves. Springer.
Zhang, C., He, J., Zhu, Y., Yang, C.-J., Li, W., Zhu, Y., Lin, M. & Noblesse, F. 2015 Interference effects on the Kelvin wake of a monohull ship represented via a continuous distribution of sources. Eur. J. Mech. (B/Fluids) 51, 2736.
Zhang, Y. & Zhu, S. 1996a A comparison study of nonlinear waves generated behind a semicircular trench. Proc. R. Soc. Lond. A 452, 15631584.
Zhang, Y. & Zhu, S. 1996b Open channel flow past a bottom obstruction. J. Engng Maths 30, 487499.
Zhu, Y., He, J., Zhang, C., Wu, H., Wan, D., Zhu, R. & Noblesse, F. 2015 Farfield waves created by a monohull ship in shallow water. Eur. J. Mech. (B/Fluids) 49, 226234.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification

Type Description Title
Supplementary materials

Buttle et al. supplementary material
Buttle et al. supplementary material 1

 Unknown (230 KB)
230 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed