Binder, B. J., Blyth, M. G. & Balasuriya, S.
2014
Non-uniqueness of steady free-surface flow at critical Froude number. Europhys. Lett.
105, 44003.

Binder, B. J., Blyth, M. G. & McCue, S. W.
2013
Free-surface flow past arbitrary topography and an inverse approach for wave-free solutions. IMA J. Appl. Maths
78, 685–696.

Binder, B. J., Dias, F. & Vanden-Broeck, J.-M.
2006
Steady free-surface flow past an uneven channel bottom. Theor. Comput. Fluid Dyn.
20, 125–144.

Broutman, D., Rottman, J. W. & Eckermann, S. D.
2010
A simplified Fourier method for nonhydrostatic mountain waves. J. Atmos. Sci.
60, 2686–2696.

Brown, P. N. & Saad, Y.
1990
Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sci. Stat. Comput.
11, 450–481.

Chapman, S. J. & Vanden-Broeck, J.-M.
2006
Exponential asymptotics and gravity waves. J. Fluid Mech.
567, 299–326.

Chardard, F., Dias, F., Nguyen, H. Y. & Vanden-Broeck, J.-M.
2011
Stability of some stationary solutions to the forced KdV equation with one or two bumps. J. Engng Maths
70, 175–189.

Chuang, J. M.
2000
Numerical studies on non-linear free surface flow using generalized Schwarz–Christoffel transformation. Intl J. Numer. Meth. Fluids
32, 745–772.

Darmon, A., Benzaquen, M. & Raphaël, E.
2014
Kelvin wake pattern at large Froude numbers. J. Fluid Mech.
738, R3.

Dias, F.
2014
Ship waves and Kelvin. J. Fluid Mech.
746, 1–4.

Dias, F. & Vanden-Broeck, J.-M.
1989
Open channel flows with submerged obstructions. J. Fluid Mech.
206, 155–170.

Dias, F. & Vanden-Broeck, J.-M.
2002
Generalised critical free-surface flows. J. Engng Maths
42, 291–301.

Eckermann, S. D., Lindeman, J., Broutman, D., Ma, J. & Boybeyi, Z.
2010
Momentum fluxes of gravity waves generated by variable Froude number flow over three-dimensional obstacles. J. Atmos. Sci.
67, 2260–2278.

Ellingsen, S. Å.
2014
Ship waves in the presence of uniform vorticity. J. Fluid Mech.
742, R2.

Forbes, L. K.
1985
On the effects of non-linearity in free-surface flow about a submerged point vortex. J. Engng Maths
19, 139–155.

Forbes, L. K.
1989
An algorithm for 3-dimensional free-surface problems in hydrodynamics. J. Comput. Phys.
82, 330–347.

Forbes, L. K. & Hocking, G. C.
2005
Flow due to a sink near a vertical wall, in infinitely deep fluid. Comput. Fluids
34, 684–704.

Forbes, L. K. & Schwartz, L. W.
1982
Free-surface flow over a semicircular obstruction. J. Fluid Mech.
114, 299–314.

Gazdar, A. S.
1973
Generation of waves of small amplitude by an obstacle placed on the bottom of a running stream. J. Phys. Soc. Japan
34, 530–538.

He, J., Zhang, C., Zhu, Y., Wu, H., Yang, C.-J., Noblesse, F., Gu, X. & Li, W.
2014
Comparison of three simple models of Kelvin’s ship wake. Eur. J. Mech. (B/Fluids)
49, 12–19.

Higgins, P. J., Read, W. W. & Belward, S. R.
2006
A series-solution method for free-boundary problems arising from flow over topography. J. Engng Maths
54, 345–358.

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker, D. E. & Woodward, C. S.
2005
SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw.
31, 363–396.

Hocking, G. C., Holmes, R. J. & Forbes, L. K.
2013
A note on waveless subcritical flow past a submerged semi-ellipse. J. Engng Maths
81, 1–8.

King, A. C. & Bloor, M. I. G.
1990
Free-surface flow of a stream obstructed by an arbitrary bed topography. Q. J. Mech. Appl. Maths
43, 87–106.

Knoll, D. A. & Keyes, D. E.
2004
Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys.
193, 357–397.

Lamb, H.
1932
Hydrodynamics. Cambridge University Press.

Li, Y. & Ellingsen, S. Å.
2016
Ship waves on uniform shear current at finite depth: wave resistance and critical velocity. J. Fluid Mech.
791, 539–567.

Lustri, C. J., McCue, S. W. & Binder, B. J.
2012
Free surface flow past topography: a beyond-all-orders approach. Eur. J. Appl. Maths
23, 441–467.

McCue, S. W. & Forbes, L. K.
2002
Free-surface flows emerging from beneath a semi-infinite plate with constant vorticity. J. Fluid Mech.
461, 387–407.

Miao, S. & Liu, Y.
2015
Wave pattern in the wake of an arbitrary moving surface pressure disturbance. Phys. Fluids
27, 122102.

Noblesse, F., He, J., Zhu, Y., Hong, L., Zhang, C., Zhu, R. & Yang, C.
2014
Why can ship wakes appear narrower than Kelvin’s angle?
Eur. J. Mech. (B/Fluids)
46, 164–171.

Părău, E. I. & Vanden-Broeck, J.-M.
2002
Nonlinear two-and three-dimensional free surface flows due to moving disturbances. Eur. J. Mech. (B/Fluids)
21, 643–656.

Părău, E. I. & Vanden-Broeck, J.-M.
2011
Three-dimensional waves beneath an ice sheet due to a steadily moving pressure. Phil. Trans. R. Soc. Lond. A
369, 2973–2988.

Părău, E. I., Vanden-Broeck, J.-M. & Cooker, M. J.
2005a
Nonlinear three-dimensional gravity–capillary solitary waves. J. Fluid Mech.
536, 99–105.

Părău, E. I., Vanden-Broeck, J.-M. & Cooker, M. J.
2005b
Three-dimensional gravity-capillary solitary waves in water of finite depth and related problems. Phys. Fluids
17, 122101.

Părău, E. I., Vanden-Broeck, J.-M. & Cooker, M. J.
2007a
Nonlinear three-dimensional interfacial flows with a free surface. J. Fluid Mech.
591, 481–494.

Părău, E. I., Vanden-Broeck, J.-M. & Cooker, M. J.
2007b
Three-dimensional capillary-gravity waves generated by a moving disturbance. Phys. Fluids
19, 082102.

Pethiyagoda, R., McCue, S. W., Moroney, T. J. & Back, J. M.
2014a
Jacobian-free Newton–Krylov methods with GPU acceleration for computing nonlinear ship wave patterns. J. Comput. Phys.
269, 297–313.

Pethiyagoda, R., McCue, S. W. & Moroney, T. J.
2014b
What is the apparent angle of a Kelvin ship wave pattern?
J. Fluid Mech.
758, 468–485.

Pethiyagoda, R., McCue, S. W. & Moroney, T. J.
2015
Wake angle for surface gravity waves on a finite depth fluid. Phys. Fluids
27, 061701.

Pethiyagoda, R., McCue, S. W. & Moroney, T. J.
2017
Spectrograms of ship wakes: identifying linear and nonlinear wave signals. J. Fluid Mech.
811, 189–209.

Pethiyagoda, R., Moroney, T. J., MacFarlane, G. J., Binns, J. R. & McCue, S. W.
2018a
Time-frequency analysis of ship wave patterns in shallow water: modelling and experiments. Ocean Engng
158, 123–131.

Pethiyagoda, R., Moroney, T. J. & McCue, S. W.
2018b
Efficient computation of two-dimensional steady free-surface flows. Intl J. Numer. Meth. Fluids
86, 607–624.

Rabaud, M. & Moisy, F.
2013
Ship wakes: Kelvin or Mach angle?
Phys. Rev. Lett.
110, 214503.

Saad, Y. & Schultz, M. H.
1986
GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.
7, 856–869.

Scullen, D. C.1998 Accurate computation of steady nonlinear free-surface flows. PhD thesis, Department of Applied Mathematics, University of Adelaide.

Smeltzer, B. K. & Ellingsen, S. Å.
2017
Surface waves on currents with arbitrary vertical shear. Phys. Fluids
29, 047102.

Soomere, T.
2007
Nonlinear components of ship wake waves. Appl. Mech. Rev.
60, 120–138.

Teixeira, M. A. C.
2014
The physics of orographic gravity wave drag. Frontiers Phys.
2, 43.

Torsvik, T., Soomere, T., Didenkulova, I. & Sheremet, A.
2015
Identification of ship wake structures by a time-frequency method. J. Fluid Mech.
765, 229–251.

Wade, S. L., Binder, B. J., Mattner, T. W. & Denier, J. P.
2017
Steep waves in free-surface flow past narrow topography. Phys. Fluids
29, 062107.

Wehausen, J. V. & Laitone, E. V.
1960
Surface Waves. Springer.

Zhang, C., He, J., Zhu, Y., Yang, C.-J., Li, W., Zhu, Y., Lin, M. & Noblesse, F.
2015
Interference effects on the Kelvin wake of a monohull ship represented via a continuous distribution of sources. Eur. J. Mech. (B/Fluids)
51, 27–36.

Zhang, Y. & Zhu, S.
1996a
A comparison study of nonlinear waves generated behind a semicircular trench. Proc. R. Soc. Lond. A
452, 1563–1584.

Zhang, Y. & Zhu, S.
1996b
Open channel flow past a bottom obstruction. J. Engng Maths
30, 487–499.

Zhu, Y., He, J., Zhang, C., Wu, H., Wan, D., Zhu, R. & Noblesse, F.
2015
Farfield waves created by a monohull ship in shallow water. Eur. J. Mech. (B/Fluids)
49, 226–234.