Skip to main content Accessibility help
×
×
Home

Three-dimensional flow past a rotating cylinder

  •   Navrose (a1), Jagmohan Meena (a1) and Sanjay Mittal (a1)

Abstract

Three-dimensional computations are carried out for a spinning cylinder placed in a uniform flow. The non-dimensional rotation rate is varied in the range $0.0\leqslant {\it\alpha}\leqslant 5.0$ . A stabilized finite element method is utilized to solve the incompressible Navier–Stokes equations in primitive variables formulation. Linear stability analysis of the steady state shows the existence of several new unstable three-dimensional modes for $200\leqslant \mathit{Re}\leqslant 350$ and $4.0\leqslant {\it\alpha}\leqslant 5.0$ . The curves of neutral stability of these modes are presented in the $\mathit{Re}{-}{\it\alpha}$ parameter space. For the flow at $\mathit{Re}=200$ and rotation rate in the ranges $0.0\leqslant {\it\alpha}\leqslant 1.91$ and $4.34\leqslant {\it\alpha}\leqslant 4.7$ , the vortex shedding, earlier reported in two dimensions and commonly referred to as parallel shedding, can also exist as oblique shedding. In this mode of shedding, the vortices are inclined to the axis of the cylinder. In fact, parallel shedding is a special case of oblique shedding. It is found that the span of the cylinder plays a significant role in the time evolution of the flow. Of all the unstable eigenmodes, with varied spanwise wavenumber, only the ones whose integral number of wavelengths fit the span length of the cylinder are selected to grow. For the flow at $\mathit{Re}=200$ , two steady states exist for $4.8\leqslant {\it\alpha}\leqslant 5.0$ . While one of them is associated with unstable eigenmodes, the other is stable to all infinitesimal perturbations. In this regime, irrespective of the initial conditions, the fully developed flow is steady and devoid of any instabilities.

Copyright

Corresponding author

Email address for correspondence: smittal@iitk.ac.in

References

Hide All
Barkley, D. & Henderson, R. D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.
Barnes, F. H. 2000 Vortex shedding in the wake of a rotating circular cylinder at low Reynolds number. J. Phys. D: Appl. Phys. 33, L141L144.
Bayly, B. J. 1988 Three dimensional centrifugal-type instabilities in inviscid two-dimensional flows. Phys. Fluids 31, 5664.
Behara, S. & Mittal, S. 2009 Parallel finite element computation of incompressible flows. Parallel Comput. 35, 195212.
Berger, E. & Wille, R. 1972 Periodic flow phenomena. Annu. Rev. Fluid Mech. 4, 313340.
El Akoury, R., Braza, M., Perrin, R., Harran, G. & Hoarau, Y. 2008 The three-dimensional transition in the flow around a rotating cylinder. J. Fluid Mech. 607, 111.
Gerich, D. & Eckelmann, H. 1982 Influence of end plates and free ends on the shedding frequency of circular cylinders. J. Fluid Mech. 122, 109121.
Hu, G.-H., Sun, D.-J., Yin, X.-Y. & Tong, B.-G. 1996 Hopf bifurcation in wakes behind a rotating and translating circular cylinder. Phys. Fluids 8 (7), 19721974.
Ingham, D. B. 1983 Steady flow past a rotating cylinder. Comput. Fluids 11 (4), 351366.
Kang, S. M., Choi, H. C. & Lee, S. 1999 Laminar flow past a rotating circular cylinder. Phys. Fluids 11 (11), 33123321.
Meena, J.2011 Three-dimensional instabilities in flow past a rotating cylinder. M.Tech. thesis, Department of Aerospace Engineering, Indian Institute of Technology, Kanpur.
Meena, J., Sidharth, G. S., Khan, M. H. & Mittal, S.2011 Three-dimensional instabilities in flow past a spinning and translating cylinder. In IUTAM Symposium on Bluff Body Flows, IIT Kanpur, India (ed. S. Mittal & G. Biswas), Book of Papers, pp. 59–62.
Mittal, S. 2004 Three-dimensional instabilities in flow past a rotating cylinder. Trans. ASME: J. Appl. Mech. 71 (1), 8995.
Mittal, S. & Kumar, B. 2003 Flow past a rotating cylinder. J. Fluid Mech. 476, 303334.
Mittal, S. & Sidharth, G. S. 2013 Steady forces on a cylinder with oblique vortex shedding. J. Fluids Struct. 44, 310315.
Padrino, J. C. & Joseph, D. D. 2006 Numerical study of the steady-state uniform flow past a rotating cylinder. J. Fluid Mech. 557, 191223.
Pralits, J. O., Brandt, L. & Giannetti, F. 2010 Instability and sensitivity of the flow around a rotating circular cylinder. J. Fluid Mech. 650, 513536.
Pralits, J. O., Giannetti, F. & Brandt, L. 2013 Three-dimensional instability of the flow around a rotating circular cylinder. J. Fluid Mech. 730, 518.
Radi, A., Thompson, M. C., Rao, A., Hourigan, K. & Sheridan, J. 2013 Experimental evidence of new three-dimensional modes in the wake of a rotating cylinder. J. Fluid Mech. 734, 567594.
Rao, A., Leontini, J., Thompson, M. C. & Hourigan, K. 2013a Three-dimensionality in the wake of a rotating cylinder in a uniform flow. J. Fluid Mech. 717, 129.
Rao, A., Leontini, J., Thompson, M. C. & Hourigan, K. 2013b Three-dimensionality in the wake of a rapidly rotating cylinder in uniform flow. J. Fluid Mech. 730, 379391.
Rao, A., Radi, A., Leontini, J., Thompson, M. C., Sheridan, J. & Hourigan, K. 2014 A review of rotating cylinder wake transitions. J. Fluids Struct.
Rayleigh, Lord 1917 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93, 148154.
Saad, Y. & Schultz, M. H. 1986 GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (3), 856869.
Stewart, G. W. 1975 Methods of simultaneous iteration for calculating eigenvectors of matrices. In Topics in Numerical Analysis II (ed. Miller, J. H. H.), pp. 169185. Academic.
Stojković, D., Breuer, M. & Durst, F. 2002 Effect of high rotation rates on the laminar flow around a circular cylinder. Phys. Fluids 14 (9), 31603178.
Stojković, D., Schön, P., Breuer, M. & Durst, F. 2003 On the new vortex shedding mode past a rotating circular cylinder. Phys. Fluids 15 (5), 12571260.
Tezduyar, T. C., Mittal, S., Ray, S. E. & Shih, R. 1992 Incompressible flow computations with a stabilized bilinear and linear equal-order-interpolation velocity–pressure elements. Comput. Meth. Appl. Mech. Engng 95, 221242.
Tritton, D. J. 1971 A note on vortex streets behind circular cylinders at low Reynolds numbers. J. Fluid Mech. 45, 203208.
Verma, A. & Mittal, S. 2011 A new unstable mode in the wake of a circular cylinder. Phys. Fluids 23 (12), 121701.
Williamson, C. H. K. 1989 Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579627.
Williamson, C. H. K. 1996 Three dimensional vortex dynamics in bluff body wakes. Exp. Therm. Fluid Sci. 12, 150168.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed