Skip to main content Accessibility help
×
Home

A three-dimensional Dirichlet-to-Neumann operator for water waves over topography

  • D. Andrade (a1) and A. Nachbin (a1)

Abstract

Surface water waves are considered propagating over highly variable non-smooth topographies. For this three-dimensional problem a Dirichlet-to-Neumann (DtN) operator is constructed reducing the numerical modelling and evolution to the two-dimensional free surface. The corresponding discrete Fourier integral operator is defined through a matrix decomposition. The topographic component of the decomposition requires special care, and a Galerkin method is provided accordingly. One-dimensional numerical simulations, along the free surface, validate the DtN formulation in the presence of a large-amplitude rapidly varying topography. An alternative conformal-mapping-based method is used for benchmarking. A two-dimensional simulation in the presence of a Luneburg lens (a particular submerged mound) illustrates the accurate performance of the three-dimensional DtN operator.

Copyright

Corresponding author

Email addresses for correspondence: nachbin@impa.br, dandrade@impa.br

References

Hide All
Ablowitz, M. J., Fokas, A. S. & Musslimani, Z. H. 2006 On a new non-local formulation of water waves. J. Fluid Mech. 592, 313343.
Ambrose, D. M., Bona, J. L. & Nicholls, D. P. 2013 On ill-posedness of truncated series models for water waves. Proc. R. Soc. Lond. A 470, 20130849.
Arcar, D. & Segur, H. 2012 Seismically generated tsunamis. Phil. Trans. R. Soc. Lond. A 370, 15051542.
Artiles, W. & Nachbin, A. 2004 Nonlinear evolution of surface gravity waves over highly variable depth. Phys. Rev. Lett. 93, 234501.
Ashton, A. C. L. & Fokas, A. S. 2011 A non-local formulation of rotational water waves. J. Fluid Mech. 689, 129148.
Cathala, M. 2016 Asymptotic shallow water models with non smooth topographies. Monatshefte für Mathematik 179, 325353.
Choi, J. & Milewski, P. A. 2003 Long nonlinear waves in resonance with topography. Stud. Appl. Maths 110, 2147.
Constantin, A. 2011 Nonlinear Water Waves with Applications to Wave–Current Interactions and Tsunamis. SIAM.
Craig, W., Guyenne, P., Nicholls, D. P. & Sulem, C. 2005 Hamiltonian long-wave expansions for water waves over a rough bottom. Proc. R. Soc. Lond. A 461, 839873.
Craig, W. & Sulem, C. 1993 Numerical simulation of gravity waves. J. Comput. Phys. 108, 7383.
Dean, R. G. & Dalrymple, R. A. 1991 Water Wave Mechanics for Engineers and Scientists. World Scientific.
Deconinck, B. & Oliveras, K. 2011 The instability of periodic surface gravity waves. J. Fluid Mech. 675, 141167.
Dingemans, M. W. 1997 Water Wave Mechanics for Engineers and Scientists. World Scientific.
Driscoll, T. A. & Trefethen, L. N. 2002 Schwarz–Christoffel Mapping. Cambridge University Press.
Fokas, A. S. & Nachbin, A. 2012 Water waves over a variable bottom: a non-local formulation and conformal mappings. J. Fluid Mech. 695, 288309.
Guyenne, P. & Nicholls, D. P. 2005 Numerical simulation of solitary waves on plane slopes. Maths Comput. Simul. 69, 269281.
Haut, T. S. & Ablowitz, M. J. 2009 A reformulation and applications of interfacial fluids with a free surface. J. Fluid Mech. 631, 375396.
Johnson, R. S. 1997 A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press.
Lannes, D. 2005 Well-posedness of the water-waves equations. J. Amer. Math. Soc. 18, 605654.
Mei, C. C. 1985 Resonant reflection of surface water waves by periodic sandbars. J. Fluid Mech. 152, 315335.
Milewski, P. A. 1998 A formulation for water waves over topography. Stud. Appl. Maths 100, 95106.
Nachbin, A. 1993 Modelling of Water Waves in Shallow Channels. Computational Mechanics.
Nachbin, A. 2003 A terrain-following Boussinesq system. SIAM J. Appl. Maths 63, 905922.
Rosales, R. R. & Papanicolaou, G. C. 1983 Gravity waves in a channel with a rough bottom. Stud. Appl. Maths 68, 89102.
Vargas-Magaña, R. M. & Panayotaros, P. 2016 A Whitham–Boussinesq long-wave model for variable topography. Wave Motion 65, 156174.
Vasan, V. & Deconinck, B. 2013 The inverse water wave problem of bathymetry detection. J. Fluid Mech. 714, 562590.
Whitham, G. B. 1999 Linear and Nonlinear Waves. John Wiley.
Wilkening, J. & Vasan, V. 2015 Comparison of five methods of computing the Dirichlet–Neumann operator for the water wave problem. Contemp. Maths 635, 175210.
Zauderer, E. 1989 Partial Differential Equations of Applied Mathematics. John Wiley.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movie

Andrade and Nachbin supplementary movie
Focusing by the Luneburg lens: evolution and refraction of the velocity potential by the submerged circular mound.

 Video (7.1 MB)
7.1 MB

A three-dimensional Dirichlet-to-Neumann operator for water waves over topography

  • D. Andrade (a1) and A. Nachbin (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed