Skip to main content Accessibility help

Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure

  • C. S. YOO (a1), R. SANKARAN (a2) and J. H. CHEN (a1)


Direct numerical simulation (DNS) of the near field of a three-dimensional spatially developing turbulent lifted hydrogen jet flame in heated coflow is performed with a detailed mechanism to determine the stabilization mechanism and the flame structure. The DNS was performed at a jet Reynolds number of 11,000 with over 940 million grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. A chemical flux analysis shows the occurrence of near-isothermal chemical chain branching preceding thermal runaway upstream of the stabilization point, indicative of hydrogen auto-ignition in the second limit. The Damköhler number and key intermediate-species behaviour near the leading edge of the lifted flame also verify that auto-ignition occurs at the flame base. At the lifted-flame base, it is found that heat release occurs predominantly through ignition in which the gradients of reactants are opposed. Downstream of the flame base, both rich-premixed and non-premixed flames develop and coexist with auto-ignition. In addition to auto-ignition, Lagrangian tracking of the flame base reveals the passage of large-scale flow structures and their correlation with the fluctuations of the flame base. In particular, the relative position of the flame base and the coherent flow structure induces a cyclic motion of the flame base in the transverse and axial directions about a mean lift-off height. This is confirmed by Lagrangian tracking of key scalars, heat release rate and velocity at the stabilization point.


Corresponding author

Email address for correspondence:


Hide All

Present address: School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea. Email:



Hide All
Bilger, R. W. 1979 Turbulent flows with nonpremixed reactants. In Turbulent Reacting Flows (ed. Libby, P. A. & Williams, F. A.), Topics in Applied Physics, vol. 44, pp. 65113. Springer.
Bilger, R. W. 1988 The structure of turbulent nonpremixed flames. Proc. Combust. Inst. 22, 475488.
Borghi, R. 1988 Turbulent combustion modelling. Prog. Energy Combust. Sci. 14, 245292.
Buckmaster, J. 2002 Edge flames. Prog. Energy Combust. Sci. 28, 435475.
Cabra, R., Myhrvold, T., Chen, J. Y., Dibble, R. W., Karpetis, A. N. & Barlow, R. S. 2002 Simultaneous laser Raman–Rayleigh–LIF measurements and numerical modelling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 29, 18811888.
Cao, R. R., Pope, S. B. & Masri, A. R. 2005 Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations. Combust. Flame 142, 438453.
Chen, J. H., Choudhary, A., de Supinski, B., DeVries, M., Hawkes, E. R., Klasky, S., Liao, W. K., Ma, K. L., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S. & Yoo, C. S. 2009 Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Disc. 2, 015001.
Choi, C. W. & Puri, I. K. 2000 Flame stretch effects on partially premixed flames. Combust. Flame 123, 119139.
Chung, S. H. 2007 Stabilization, propagation and instability of tribrachial triple flame. Proc. Combust. Inst. 31, 877892.
Dec, J. E. 1997 Conceptual model of DI diesel combustion based on laser-sheet imaging. SAE Trans. 105, 13191348.
Domingo, P., Vervisch, L. & Réveillon, J. 2005 DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air. Combust. Flame 152, 415432.
Domingo, P., Vervisch, L. & Veynante, D. 2008 Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 140, 172195.
Echekki, T. & Chen, J. H. 1999 Analysis of the contribution of curvature to premixed flame propagation. Combust. Flame 118, 308311.
Echekki, T. & Chen, J. H. 2003 Direct numerical simulation of autoignition in non-homogeneous hydrogen–air mixtures. Combust. Flame 134, 169191.
Eswaran, V. & Pope, S. B. 1988 Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31, 506520.
Gamard, S., Jung, D. & George, W. K. 2004 Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 2. The far-field region. J. Fluid Mech. 514, 205230.
Gibson, C. H. 1968 Fine structure of scalar fields mixed by turbulence. Part I. Zero-gradient points and minimal gradient surfaces. Phys. Fluids 11, 23052315.
Gkagkas, K. & Lindstedt, R. P. 2006 PDF modelling of hydrogen/air lifted flame. In Eighth International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames, Heigelberg, Germany.
Gordon, R. L., Masri, A. R. & Mastorakos, E. 2008 Simultaneous Rayleigh temperature, OH- and CH2O-LIF imaging of methane jets in a vitiated coflow. Combust. Flame 155, 181195.
Gordon, R. L., Masri, A. R., Pope, S. B. & Goldin, G. M. 2007 A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow. Combust. Theory Model. 11, 351376.
Hammer, J. A. & Roshko, A. 2000 Temporal behaviour of lifted turbulent jet flames. Combust. Sci. Technol. 155, 75103.
Helenbrook, B. T., Im, H. G. & Law, C. K. 1998 Theory of radical-induced ignition of counterflowing hydrogen versus oxygen at high temperature. Combust. Flame 112, 242252.
Im, H. G. & Chen, J. H. 1999 Structure and propagation of triple flames in partially premixed hydrogen–air mixtures. Combust. Flame 119, 436454.
Im, H. G., Chen, J. H. & Law, C. K. 1998 Ignition of hydrogen-air mixing layer in turbulent flows. Proc. Combust. Inst. 27, 10471056.
Jiménez, C. & Cuenot, B. 2007 DNS study of stabilization of turbulent triple flames by hot gases. Proc. Combust. Inst. 31, 16491656.
Joedicke, A., Peters, N. & Mansour, M. 2005 The stabilization mechanism and structure of turbulent hydrocarbon lifted flames. Proc. Combust. Inst. 30, 901909.
Jones, W. P. & Navarro-Martinez, S. 2007 Large eddy simulation of autoignition with a subgrid probability density function method. Combust. Flame 150, 170187.
Jung, D., Gamard, S. & George, W. K. 2004 Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. The near-field region. J. Fluid Mech. 514, 173204.
Kalghatgi, G. T. 1984 Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Combust. Sci. Technol. 41, 1729.
Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E. & Miller, J. A. 1986 A fortran computer code package for the evaluation of gas-phase multicomponent transport properties. Tech Rep. SAND86-8246. Sandia National Laboratories.
Kee, R. J., Grcar, J. F., Smooke, M. D. & Miller, J. A. 1985 A fortran program for modelling steady laminar one-dimensional flames. Tech Rep. SAND85-8240. Sandia National Laboratories.
Kee, R. J., Rupley, F. M., Meeks, E. & Miller, J. A. 1996 CHEMKIN-III: a fortran chemical kinetic package for the anaylsis of gas-phase chemical and plasma knietics. Tech Rep. SAND96-8216. Sandia National Laboratories.
Kennedy, C. A. & Carpenter, M. H. 1994 Several new numerical methods for compressible shear-layer simulations. Appl. Num. Math. 14, 397433.
Kennedy, C. A., Carpenter, M. H. & Lewis, R. M. 2000 Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Num. Math. 35, 117219.
Kreutz, T. G. & Law, C. K. 1996 Ignition in nonpremixed counterflowing hydrogen versus heated air: computational study with detailed chemistry. Combust. Flame 104, 157175.
Law, C. K. 2006 Combustion Physics. Cambridge University Press.
Li, J., Zhao, Z., Kazakov, A. & Dryer, F. L. 2004 An updated comprehensive kinetic model of hydrogen combustion. Intl J. Chem. Kinet. 36, 566575.
Lutz, A. E., Kee, R. J., Grcar, J. F. & Rupley, F. M. 1997 A fortran program for computing opposed-flow diffusion flames. Tech Rep. SAND96-8243. Sandia National Laboratories.
Lyons, K. M. 2007 Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Prog. Energy Combust. Sci. 33, 211231.
Markides, C. N. & Mastorakos, E. 2005 An experimental study of hydrogen autoignition in a turbulent co-flow of heated air. Proc. Combust. Inst. 30, 883891.
Mascarenhas, A., Grout, R.W., Bremer, P.-T., Pascucci, V., Hawkes, E. & Chen, J.H. 2009 Topological feature extraction for comparison of length scales in terascale combustion simulation data. In Topoinvis'09: Topological Methods in Data Analysis and Visualization (eds. Pascucci, V., Tricoche, X., Hagen, H. & Tierny, J.). Springer.
Masri, A. R., Cao, R., Pope, S. B. & Goldin, G. M 2004 PDF calculations of turbulent lifted flames of H2/N2 fuel issuing into a vitiated co-flow. Combust. Theory Model. 8, 122.
Mastorakos, E., Baritaud, T. A. & Poinsot, T. J. 1997 a Numerical simulations of autoignition in turbulent mixing flows. Combust. Flame 109, 198223.
Mastorakos, E., Cruz, A. Pires Da & Poinsot, T. J. 1997 b A model for the effects of mixing on the autoignition of turbulent flows. Combust. Sci. Technol. 125, 243282.
Miake-Lye, R. C. & Hammer, J. A. 1988 Alifted turbulent jet flames: a stability criterion based on the jet large-scale structure. Proc. Combust. Inst. 22, 817824.
Mizobuchi, Y., Tachibana, S., Shinio, J., Ogawa, S. & Takeno, T. 2002 A numerical analysis of the structure of a turbulent hydrogen jet lifted flame. Proc. Combust. Inst. 29, 20092015.
Mueller, C. J., Driscoll, J. F., Reuss, D. L., Drake, M. C. & Roslik, M. E. 1998 Vorticity generation and attenuation as vortices convect through a premixed flame. Combust. Flame 112, 342358.
Muñiz, L. & Mungal, M. G. 1997 Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. Combust. Flame 111, 1631.
Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 118, 441466.
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.
Peters, N. & Williams, F. A. 1983 Liftoff characteristics of turbulent jet diffusion flames. AIAA J. 21, 423429.
Pickett, L. M. 2005 Low flame temperature limits for mixing-controlled Diesel combustion. Proc. Combust. Inst. 30, 27272735.
Pickett, L. M., Siebers, D. L. & Idicheria, C. A. 2005 Relationship between ignition processes and the lift-off length of Diesel fuel jets. SAE Paper 2005-01-3843. Society of Automotive Engineers.
Pitts, W. M. 1998 Assessment of theories for the behaviour and blowout of lifted turbulent jet diffusion flame. Proc. Combust. Inst. 22, 809816.
Poinsot, T. J., Echekki, T. & Mungal, M. G. 1992 A study of the laminar flame tip and implications for premixed turbulent combustion. Combust. Sci. Technol. 81, 4573.
Poinsot, T. J. & Lele, S. K. 1992 Boundary conditions for direct numerical simulations of compressible viscous flows. J. Comput. Phys. 101, 104139.
Pope, S. B. 1988 The evolution of surfaces in turbulence. Intl J. Eng. Sci. 26, 445469.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Richardson, E. S., Yoo, C. S. & Chen, J. H. 2009 Analysis of second-order conditional moment closure applied to an autoignitive lifted hydrogen jet flame. Proc. Combust. Inst. 32, 16951703.
Ruetsch, G. R., Vervisch, L. & Liñán, A. 1995 Effects of heat release on triple flames. Phys. Fluids 7, 14471454.
Sankaran, R., Hawkes, E. R., Chen, J. H., Lu, T. & Law, C. K. 2007 Structure of a spatially developing turbulent lean methane–air bunsen flame. Proc. Combust. Inst. 31, 12911298.
Schefer, R. W. & Goix, P. J. 1998 Mechanism of flame stabilization in turbulent lifted-jet flames. Combust. Flame 112, 559574.
Stanley, S. A., Sarkar, S. & Mellado, J. P. 2002 A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation. J. Fluid Mech. 450, 377407.
Su, L. K. & Clemens, N. T. 2003 The structure of fine-scale scalar mixing in gas-phase planar turbulent jets. J. Fluid Mech. 488, 129.
Su, L. K., Sun, O. S. & Mungal, M. G. 2006 Experimental investigation of stabilization mechanisms in turbulent, lifted jet diffusion flames. Combust. Flame 144, 494512.
Sutherland, J. C. & Kennedy, C. A. 2003 Improved boundary conditions for viscous, reacting, compressible flows. J. Comput. Phys. 191, 502524.
Tacke, M. M., Geyer, D., Hassel, E. P. & Janicka, J. 1998 A detailed investigation of the stabilization point of lifted turbulent diffusion flames. Proc. Combust. Inst. 27, 11571165.
Thomas, F. O. & Goldschmidt, V. W. 1986 Structural characteristics of a developing turbulent planar jet. J. Fluid. Mech. 163, 227256.
Upatnieks, A., Driscoll, J. F., Rasmussen, C. C. & Ceccio, S. L. 2004 Liftoff of turbulent jet flames–assessment of edge flame and other concepts using cinema-PIV. Combust. Flame 138, 259272.
Vanquickenborne, L. & van Tiggelen, A. 1966 The stabilization mechanism of lifted diffusion flames. Combust. Flame 10, 5969.
Yamashita, H., Shimada, M. & Takeno, T. 1996 A numerical study on flame stability at the transition point of jet diffusion flames. Proc. Combust. Inst. 26, 2734.
Yeung, P. K. & Pope, S. B. 1989 Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531586.
Yoo, C. S. & Im, H. G. 2005 Transient dynamics of edge flames in a laminar nonpremixed hydrogen-air counterflow. Proc. Combust. Inst. 20, 349356.
Yoo, C. S. & Im, H. G. 2007 Characteristic boundary conditions for simulations of compressible reacting flows with multi-dimensional, viscous and reaction effects. Combust. Theory Model. 11, 259286.
Yoo, C. S., Wang, Y., Trouvé, A. & Im, H. G. 2005 Characteristic boundary conditions for direct numerical simulations of turbulent counterflow flames. Combust. Theory Model. 9, 617646.
Zeldovich, Y. B. 1980 Regime classification of an exothermic reaction with non-uniform initial conditions. Combust. Flame 39, 211214.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure

  • C. S. YOO (a1), R. SANKARAN (a2) and J. H. CHEN (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed