Skip to main content Accessibility help
×
Home

Thermocapillary instability as a mechanism for film boiling collapse

  • Eskil Aursand (a1) (a2), Stephen H. Davis (a2) and Tor Ytrehus (a1)

Abstract

We construct a model to investigate the interfacial stability of film boiling, and discover that instability of very thin vapour films and subsequent large interface superheating is only possible if thermocapillary instabilities are present. The model concerns horizontal saturated film boiling, and includes novel features such as non-equilibrium evaporation based on kinetic theory, thermocapillary and vapour thrust stresses and van der Waals interactions. From linear stability analysis applied to this model, we are led to suggest that vapour film collapse depends on a balance between thermocapillary instabilities and vapour thrust stabilization. This yields a purely theoretical prediction of the Leidenfrost temperature. Given that the evaporation coefficient is in the range 0.7–1.0, this model is consistent with the average Leidenfrost temperature of every fluid for which data could be found. With an evaporation coefficient of 0.85, the model can predict the Leidenfrost point within 10 % error for every fluid, including cryogens and liquid metals where existing models and correlations fail.

Copyright

Corresponding author

Email address for correspondence: eskil.aursand@ntnu.no

References

Hide All
Agostini, B., Fabbri, M., Park, J. E., Wojtan, L., Thome, J. R. & Michel, B. 2007 State of the art of high heat flux cooling technologies. Heat Transfer Engng 28 (4), 258281.
Auliano, M., Fernandino, M., Zhang, P. & Dorao, C. A. 2017 The Leidenfrost phenomenon on sub-micron tapered pillars. In ASME 2017 15th International Conference on Nanochannels, Microchannels, and Minichannels, pp. V001T08A003V001T08A003. American Society of Mechanical Engineers.
Aursand, E. 2018 Inclination dependence of planar film boiling stability. Intl J. Multiphase Flow doi:10.1016/j.ijmultiphaseflow.2018.05.010.
Aursand, P., Gjennestad, M., Aursand, E., Hammer, M. & Wilhelmsen, Ø. 2017 The spinodal of single- and multi-component fluids and its role in the development of modern equations of state. Fluid Phase Equilib. 436, 98112.
Baumeister, K. J. & Simon, F. F. 1973 Leidenfrost temperature: its correlation for liquid metals, cryogens, hydrocarbons, and water. Trans. ASME J. Heat Transfer 95, 166173.
Berenson, P. J. 1961 Film-boiling heat transfer from a horizontal surface. Trans. ASME J. Heat Transfer 83 (3), 351356.
Bernardin, J. D. & Mudawar, I. 1999 The Leidenfrost point: experimental study and assessment of existing models. Trans. ASME J. Heat Transfer 121 (4), 894903.
Berthoud, G. 2000 Vapor explosions. Annu. Rev. Fluid Mech. 32 (1), 573611.
Burelbach, J. P., Bankoff, S. G. & Davis, S. H. 1988 Nonlinear stability of evaporating/condensing liquid films. J. Fluid Mech. 195, 463494.
Cao, B.-Y., Xie, J.-F. & Sazhin, S. S. 2011 Molecular dynamics study on evaporation and condensation of n-dodecane at liquid–vapor phase equilibria. J. Chem. Phys. 134 (16), 164309.
Cheng, S., Lechman, J. B., Plimpton, S. J. & Grest, G. S. 2011 Evaporation of Lennard-Jones fluids. J. Chem. Phys. 134 (22), 224704.
Cleaver, P., Johnson, M. & Ho, B. 2007 A summary of some experimental data on LNG safety. J. Hazard. Mater. 140 (3), 429438.
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3), 11311198.
Davis, S. H. 1987 Thermocapillary instabilities. Annu. Rev. Fluid Mech. 19 (1), 403435.
Dean, J. A. 1998 Lange’s Handbook of Chemistry, 15th edn. McGraw-Hill.
Dhir, V. K. 1998 Boiling heat transfer. Annu. Rev. Fluid Mech. 30 (1), 365401.
Epstein, L. F. & Powers, M. D. 1953 Liquid metals. Part I. The viscosity of mercury vapor and the potential function for mercury. J. Phys. Chem. 57 (3), 336341.
Fletcher, D. F. 1995 Steam explosion triggering: a review of theoretical and experimental investigations. Nucl. Engng Des. 155, 2736.
Gottfried, B. S. & Bell, K. J. 1966 Film boiling of spheroidal droplets: Leidenfrost phenomenon. Ind. Engng Chem. Fundam. 5 (4), 561568.
Hertz, H. 1882 Ueber die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume. Ann. Phys. 253 (10), 177193.
Huber, M. L., Laesecke, A. & Friend, D. G. 2006 Correlation for the vapor pressure of mercury. Ind. Engng Chem. Res. 45 (21), 73517361.
Ishiyama, T., Fujikawa, S., Kurz, T. & Lauterborn, W. 2013 Nonequilibrium kinetic boundary condition at the vapor–liquid interface of argon. Phys. Rev. E 88 (4), 042406.
Iskrenova, E. K. & Patnaik, S. S. 2017 Molecular dynamics study of octane condensation coefficient at room temperature. Intl J. Heat Mass Transfer 115, 474481.
Knudsen, M. 1915 Die maximale Verdampfungsgeschwindigkeit des Quecksilbers. Ann. Phys. 352 (13), 697708.
Kundu, P. K., Cohen, I. M. & Dowling, D. R. 2007 Fluid Mechanics, 5th edn. Academic.
Liang, Z., Biben, T. & Keblinski, P. 2017 Molecular simulation of steady-state evaporation and condensation: validity of the Schrage relationships. Intl J. Heat Mass Transfer 114, 105114.
Linstrom, P. J. & Mallard, W. G.(Eds) 2017 NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology.
Luketa-Hanlin, A. 2006 A review of large-scale LNG spills: experiments and modeling. J. Hazard. Mater. 132, 119140.
Mills, A. F. 1995 Heat and Mass Transfer. CRC Press.
Myers, T. G. 1998 Thin films with high surface tension. SIAM Rev. 40 (3), 441462.
Nagai, N. & Nishio, S. 1996 Leidenfrost temperature on an extremely smooth surface. Exp. Therm. Fluid Sci. 12 (3), 373379.
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931980.
Panzarella, C. H., Davis, S. H. & Bankoff, S. G. 2000 Nonlinear dynamics in horizontal film boiling. J. Fluid Mech. 402, 163194.
Qiao, Y. M. & Chandra, S. 1997 Experiments on adding a surfactant to water drops boiling on a hot surface. Proc. R. Soc. Lond. A Math. Phys. Engng Sci. 453, 673689.
Ruckenstein, E. & Jain, R. K. 1974 Spontaneous rupture of thin liquid films. J. Chem. Soc. Faraday Trans. 70, 132147.
Sakurai, A., Shiotsu, M. & Hata, K. 1990 Effects of system pressure on minimum film boiling temperature for various liquids. Exp. Therm. Fluid Sci. 3 (4), 450457.
Skapski, A. S. 1948 The temperature coefficient of the surface tension of liquid metals. J. Chem. Phys. 16 (4), 386389.
Spiegler, P., Hopenfeld, J., Silberberg, M., Bumpus, C. F. & Norman, A. 1963 Onset of stable film boiling and the foam limit. Intl J. Heat Mass Transfer 6 (11), 987989.
Theofanous, T. G., Liu, C., Additon, S., Angelini, S., Kymäläinen, O. & Salmassi, T. 1997 In-vessel coolability and retention of a core melt. Nucl. Engng Des. 169 (1–3), 148.
Tsuruta, T. & Nagayama, G. 2004 Molecular dynamics studies on the condensation coefficient of water. J. Phys. Chem. B 108 (5), 17361743.
Valencia-Chavez, J. A.1978 The effect of composition on the boiling rates of liquefied natural gas for confined spills on water. PhD thesis, Massachusetts Institute of Technology.
Vesovic, V. 2007 The influence of ice formation on vaporization of LNG on water surfaces. J. Hazard. Mater. 140 (3), 518526.
Vinogradov, Y. K. 1981 Thermal conductivity of mercury vapor. J. Engng Phys. Thermophys. 41 (2), 868870.
Xie, J.-F., Sazhin, S. S. & Cao, B.-Y. 2011 Molecular dynamics study of the processes in the vicinity of the n-dodecane vapour/liquid interface. Phys. Fluids 23 (11), 112104.
Yao, S.-C. & Henry, R. E. 1978 An investigation of the minimum film boiling temperature on horizontal surfaces. J. Heat Transfer 100 (2), 260267.
Ytrehus, T. 1997 Molecular-flow effects in evaporation and condensation at interfaces. Multiphase Sci. Technol. 9 (3), 205327.
Zuber, N.1959 Hydrodynamic aspects of boiling heat transfer. PhD thesis, University of California, Los Angeles, CA.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Thermocapillary instability as a mechanism for film boiling collapse

  • Eskil Aursand (a1) (a2), Stephen H. Davis (a2) and Tor Ytrehus (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed