Skip to main content Accessibility help
×
Home

Theory of weakly nonlinear self-sustained detonations

  • Luiz M. Faria (a1) (a2), Aslan R. Kasimov (a1) and Rodolfo R. Rosales (a2)

Abstract

We propose a theory of weakly nonlinear multidimensional self-sustained detonations based on asymptotic analysis of the reactive compressible Navier–Stokes equations. We show that these equations can be reduced to a model consisting of a forced unsteady small-disturbance transonic equation and a rate equation for the heat release. In one spatial dimension, the model simplifies to a forced Burgers equation. Through analysis, numerical calculations and comparison with the reactive Euler equations, the model is demonstrated to capture such essential dynamical characteristics of detonations as the steady-state structure, the linear stability spectrum, the period-doubling sequence of bifurcations and chaos in one-dimensional detonations and cellular structures in multidimensional detonations.

Copyright

Corresponding author

Email address for correspondence: aslan.kasimov@kaust.edu.sa

References

Hide All
Barker, B., Humpherys, J., Lyng, G. & Zumbrun, K. 2015 Viscous hyperstabilization of detonation waves in one space dimension. SIAM J. Appl. Maths 75 (3), 885906.
Bdzil, J. B. & Stewart, D. S. 2012 Theory of detonation shock dynamics. In Shock Waves Science and Technology Library, vol. 6, pp. 373453. Springer.
Blythe, P. A. & Crighton, D. G. 1989 Shock-generated ignition: the induction zone. Proc. R. Soc. Lond. A 426 (1870), 189209.
Bourlioux, A., Majda, A. J. & Roytburd, V. 1991 Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Maths 51, 303343.
Browne, S. & Shepherd, J. 2007 Linear stability of detonations with reversible chemical reactions. In Proceedings of the Western States Section/Combustion Institute, Sandia National Laboratories, Livermore, pp. 16691676.
Burgers, J. M. 1948 A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171199.
Choquet-Bruhat, Y. 1968 Ondes asymptotiques et approchées pour des systèmes d’équations aux dérivées partielles non linéaires. Institut Henri Poincaré.
Clavin, P. & Denet, B. 2002 Diamond patterns in the cellular front of an overdriven detonation. Phys. Rev. Lett. 88 (4), 044502.
Clavin, P. & Williams, F. A. 2002 Dynamics of planar gaseous detonations near Chapman–Jouguet conditions for small heat release. Combust. Theor. Model. 6 (1), 127139.
Clavin, P. & Williams, F. A. 2009 Multidimensional stability analysis of gaseous detonations near Chapman–Jouguet conditions for small heat release. J. Fluid Mech. 624, 125150.
Clavin, P. & Williams, F. A. 2012 Analytical studies of the dynamics of gaseous detonations. Phil. Trans. R. Soc. Lond. A 370 (1960), 597624.
Erpenbeck, J. J. 1964 Stability of idealized one-reaction detonations. Phys. Fluids 7, 684696.
Faria, L. M.2014 Qualitative and asymptotic theory of detonations. PhD thesis, King Abdullah University of Science and Technology.
Faria, L. M., Kasimov, A. R. & Rosales, R. R. 2014 Study of a model equation in detonation theory. SIAM J. Appl. Maths 74 (2), 547570.
Fickett, W. 1979 Detonation in miniature. Am. J. Phys. 47 (12), 10501059.
Fickett, W. & Davis, W. C. 2011 Detonation: Theory and Experiment. Dover.
Glaz, H. M., Colella, P., Glass, I. I. & Deschambault, R. L. 1985 A numerical study of oblique shock-wave reflections with experimental comparisons. Proc. R. Soc. Lond. A 398 (1814), 117140.
Hayes, W. D. & Probstein, R. F. 1959 Hypersonic Flow Theory. Academic.
Henrick, A. K., Aslam, T. D. & Powers, J. M. 2006 Simulations of pulsating one-dimensional detonations with true fifth order accuracy. J. Comput. Phys. 213 (1), 311329.
Humpherys, J., Lyng, G. & Zumbrun, K. 2013 Stability of viscous detonations for Majda’s model. Physica D 259, 6380.
Hunter, J. K. 1995 Asymptotic equations for nonlinear hyperbolic waves. In Surveys in Applied Mathematics, vol. 2, pp. 167276. Springer.
Hunter, J. K. & Brio, M. 2000 Weak shock reflection. J. Fluid Mech. 410, 235261.
Kasimov, A. R., Faria, L. M. & Rosales, R. R. 2013 Model for shock wave chaos. Phys. Rev. Lett. 110 (10), 104104.
Kasimov, A. R. & Stewart, D. S. 2004 On the dynamics of self-sustained one-dimensional detonations: a numerical study in the shock-attached frame. Phys. Fluids 16, 3566.
Keller, J. B. 1978 Rays, waves and asymptotics. Bull. Am. Math. Soc. 84 (5), 727750.
Ketcheson, D. I., Mandli, K. T., Ahmadia, A. J., Alghamdi, A., Quezada de Luna, M., Parsani, M., Knepley, M. G. & Emmett, M. 2012 PyClaw: accessible, extensible, scalable tools for wave propagation problems. SIAM J. Sci. Comput. 34 (4), C210C231.
Korteweg, D. J. & de Vries, G. 1895 On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39 (240), 422443.
Lee, H. I. & Stewart, D. S. 1990 Calculation of linear detonation instability: one-dimensional instability of plane detonation. J. Fluid Mech. 212, 103132.
Lee, J. H. S. 2008 The Detonation Phenomenon. Cambridge University Press.
LeVeque, R. J. 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.
Lin, C. C., Reissner, E. & Tsien, H. S. 1948 On two-dimensional non-steady motion of a slender body in a compressible fluid. J. Math. Phys. 27 (3), 220231.
Majda, A. 1980 A qualitative model for dynamic combustion. SIAM J. Appl. Maths 41 (1), 7093.
Mazaheri, K., Mahmoudi, Y. & Radulescu, M. I. 2012 Diffusion and hydrodynamic instabilities in gaseous detonations. Combust. Flame 159 (6), 21382154.
von Neumann, J. 1963 Oblique reflection of shocks. In Collected Works, vol. VI, pp. 238299. Pergamon.
Ng, H., Higgins, A., Kiyanda, C., Radulescu, M., Lee, J., Bates, K. & Nikiforakis, N. 2005 Nonlinear dynamics and chaos analysis of one-dimensional pulsating detonations. Combust. Theor. Model. 9 (1), 159170.
Oran, E. & Boris, J. P. 2001 Numerical Simulation of Reactive Flow. Cambridge University Press.
Radulescu, M. I. & Tang, J. 2011 Nonlinear dynamics of self-sustained supersonic reaction waves: Fickett’s detonation analogue. Phys. Rev. Lett. 107 (16), 164503.
Romick, C. M., Aslam, T. D. & Powers, J. M. 2012 The effect of diffusion on the dynamics of unsteady detonations. J. Fluid Mech. 699, 453464.
Romick, C. M., Aslam, T. D. & Powers, J. M. 2015 Verified and validated calculation of unsteady dynamics of viscous hydrogen–air detonations. J. Fluid Mech. 769, 154181.
Rosales, R. R. 1989 Diffraction effects in weakly nonlinear detonation waves. In Nonlinear Hyperbolic Problems, Lecture Notes in Mathematics, vol. 1402, pp. 227239. Springer.
Rosales, R. R. 1991 An introduction to weakly nonlinear geometrical optics. In Multidimensional Hyperbolic Problems and Computations, The IMA Volumes in Mathematics and Its Applications, vol. 29, pp. 281310. Springer.
Rosales, R. R. & Majda, A. J. 1983 Weakly nonlinear detonation waves. SIAM J. Appl. Maths 43 (5), 10861118.
Short, M. 1997 Multidimensional linear stability of a detonation wave at high activation energy. SIAM J. Appl. Maths 57 (2), 307326.
Short, M. & Blythe, P. A. 2002 Structure and stability of weak-heat-release detonations for finite Mach numbers. Proc. R. Soc. Lond. A 458 (2024), 17951807.
Short, M. & Stewart, D. S. 1998 Cellular detonation stability. Part 1. A normal-mode linear analysis. J. Fluid Mech. 368, 229262.
Short, M. & Stewart, D. S. 1999 The multi-dimensional stability of weak-heat-release detonations. J. Fluid Mech. 382, 109135.
Stewart, D. S., Aslam, T. D. & Yao, J. 1996 On the evolution of cellular detonation. In Proceedings of the Combustion Institute, vol. 26, pp. 29812989. The Combustion Institute.
Strogatz, S. H. 1994 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview.
Sturtevant, B. & Kulkarny, V. A. 1976 The focusing of weak shock waves. J. Fluid Mech. 73 (4), 651671.
Tabak, E. G. & Rosales, R. R. 1994 Focusing of weak shock waves and the von Neumann paradox of oblique shock reflection. Phys. Fluids 6 (5), 18741892.
Taylor, B. D., Kasimov, A. R. & Stewart, D. S. 2009 Mode selection in weakly unstable two-dimensional detonations. Combust. Theor. Model. 13 (6), 973992.
Voitsekhovskii, B. V., Mitrofanov, V. V. & Topchian, M. Y.The structure of detonation front in gases. Report FTD-MTD-64-527. Foreign Technology Division, Wright Patterson Air Force Base, OH (AD 633-821).
Whitham, G. B. 1974 Linear and Nonlinear Waves. John Wiley and Sons.
Williams, F. A. 1985 Combustion Theory. Westview.
Yao, J. & Stewart, D. S. 1996 On the dynamics of multi-dimensional detonation. J. Fluid Mech. 309, 225275.
Zabolotskaya, E. A. & Khokhlov, R. V. 1969 Quasi-plane waves in the nonlinear acoustics of confined beams. Sov. Phys. Acoust. 15 (1), 3540.
Ziegler, J. L., Deiterding, R., Shepherd, J. E. & Pullin, D. I. 2011 An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry. J. Comput. Phys. 230 (20), 75987630.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed