Skip to main content Accessibility help

Theoretical and experimental investigations of the reflexion of normal shock waves with vibrational relaxation

  • N. H. Johannesen (a1), G. A. Bird (a1) and H. K. Zienkiewicz (a1)


The one-dimensional problem of shock-wave reflexion with relaxation is treated numerically by combining the shock-wave, characteristic, and Rayleigh-line equations. The theoretical results are compared with pressure and density measurements in CO2, and the agreement is found to be excellent.



Hide All
Baganoff, D. 1964 Rev. Sci. Instr. 35, 288.
Baganoff, D. 1965 J. Fluid Mech. 23, 209.
Dyner, H. B. 1966 Physics of Fluids, 9, 879. HILSENRATH, J. et al. 1955 Nat. Bur. St. Circ. no. 564.
Hurle, I. R., Russo, A. L. & Hall, J. G. 1964 J. Chem. Phys. 40, 2076.
Johannesen, N. H. 1901 J. Fluid Mech. 10, 25.
Johannesen, N. H., Zienkiewicz, H. K., Blythe, P. A. & Gerrard, J. H. 1962 J. Fluid Mech. 13, 213.
Mises, R. Von 1958 Mathematical Theory of Compressible Fluid Flow. New York: Academic Press.
Phinney, R. 1964 A.I.A.A. J. 2, 240.
Shapiro, A. H. 1954 The Dynamics and Thermodynamics of Compressible Fluid Flow. New York: Ronald Press.
Zienkiewicz, H. K. & Johannesen, N. H. 1963 J. Fluid Mech. 17, 499 (and corrigendum 18 (1964), 635).
Zienkiewicz, H. K., Johannesen, N. H. & Gerrard, J. H. 1963 J. Fluid Mech. 17, 267.
MathJax is a JavaScript display engine for mathematics. For more information see


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed