Skip to main content Accessibility help
×
Home

Temporal instability modes of supersonic round jets

  • LUIS PARRAS (a1) (a2) and STÉPHANE LE DIZÈS (a1)

Abstract

In this study, a comprehensive inviscid temporal stability analysis of a compressible round jet is performed for Mach numbers ranging from 1 to 10. We show that in addition to the Kelvin–Helmholtz instability modes, there exist for each azimuthal wavenumber three other types of modes (counterflow subsonic waves, subsonic waves and supersonic waves) whose characteristics are analysed in detail using a WKBJ theory in the limit of large axial wavenumber. The theory is constructed for any velocity and temperature profile. It provides the phase velocity and the spatial structure of the modes and describes qualitatively the effects of base-flow modifications on the mode characteristics. The theoretical predictions are compared with numerical results obtained for an hyperbolic tangent model and a good agreement is demonstrated. The results are also discussed in the context of jet noise. We show how the theory can be used to determine a priori the impact of jet modifications on the noise induced by instability.

Copyright

Corresponding author

Email address for correspondence: lparras@uma.es

References

Hide All
Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.
Batchelor, G. K. & Gill, A. E. 1962 Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14, 529551.
Bender, C. M. & Orszag, S. A. 1999 Advanced Mathematical Methods for Scientists and Engineers. Springer.
Blumen, W. 1970 Shear layer instability of an inviscid compressible fluid. J. Fluid Mech. 40, 769781.
Blumen, W., Drazin, P. G. & Billings, D. F. 1975 Shear layer instability of an inviscid compressible fluid. Part 2. J. Fluid Mech. 71, 305316.
Drazin, P. G. & Howard, L. N. 1966 Hydrodynamic stability of parallel flow of inviscid fluid. Adv. Appl. Mech. 9, 189.
Duck, P. 1990 The inviscid axisymmetric stability of the supersonic flow along a circular cylinder. J. Fluid Mech. 214, 661–637.
Fabre, D. & Jacquin, L. 2004 Viscous instabilities in trailing vortices at large swirl numbers. J. Fluid Mech. 500, 239262.
Landau, L. 1944 Stability of tangential discontinuities in compressible fluid. Akad. Nauk. S.S.S.R., Comptes Rendus (Doklady) 44, 139141.
Lau, J. C. 1981 Effects of exit mach number an temperature on mean flow and turbulence characteristics in round jets. J. Fluid Mech. 105, 193218.
Le Dizès, S. 2008 Inviscid waves on a Lamb–Oseen vortex in a rotating stratified fluid: consequences on the elliptic instability. J. Fluid Mech. 597, 283303.
Le Dizès, S. & Billant, P. 2009 Radiative instability in stratified vortices. Phys. Fluids 21, 096602.
Le Dizès, S. & Lacaze, L. 2005 An asymptotic description of vortex kelvin modes. J. Fluid Mech. 542, 6996.
Lighthill, M. J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211, 564587.
Lindzen, R. & Barker, J. W. 1985 Instability and wave over-reflection in stably stratified shear flow. J. Fluid Mech. 151, 189217.
Luo, K. H. & Sandham, N. D. 1996 Instability of vortical and acoustic modes in supersonic round jets. Phys. Fluids 9, 10031013.
Mack, L. M. 1984 Boundary layer linear stability theory. AGARD Rep. 709.
Mack, L. M. 1990 On the inviscid acoustic-mode instability of supersonic shear flows. Part I. Two-dimensional waves. Theor. Comput. Fluid Dyn. 2, 97.
Michalke, A. 1964 On the inviscid instability of the hyperbolic-tangent profile. J Fluid Mech. 19, 543556.
Papamoschou, D. & Debiasi, M. 2001 Directional suppression of noise from a high-speed jet. AIAA 39 (3), 380387.
Riedinger, X., Le Dizès, S. & Meunier, P. 2010 Viscous stability properties of Lamb–Oseen vortex in a stratified fluid. J. Fluid Mech. 645, 255278.
Shepard, H. K. 1983 Decay widths for metastable states. Improved WKB approximation. Phys. Rev. D 27 (6), 12881298.
Takehiro, S. & Hayashi, Y. Y. 1992 Over-reflection and shear instability in a shallow-water model. J. Fluid Mech. 236, 259279.
Tam, C. W. 1995 Supersonic jet noise. Annu. Rev. Fluid Mech. 27, 1743.
Tam, C. K. W. & Burton, D. E. 1984 a Sound generated by instability waves of supersonic flows. Part 1. Two-dimensional mixing layers. J. Fluid Mech. 138, 249271.
Tam, C. K. W. & Burton, D. E. 1984 b Sound generated by instability waves of supersonic flows. Part 2. Axisymmetric jets. J. Fluid Mech. 138, 273295.
Tam, C. K. W. & Hu, F. Q. 1989 On the three families of instability waves of high speed jets. J. Fluid Mech. 201, 447483.
Troutt, T. R. & McLaughlin, D. K. 1982 Experiments of the flow and acoustic properties of a moderate-Reynolds-number supersonic jet. J. Fluid Mech. 116, 123156.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Temporal instability modes of supersonic round jets

  • LUIS PARRAS (a1) (a2) and STÉPHANE LE DIZÈS (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed